Menu Close

Question-74483




Question Number 74483 by liki last updated on 24/Nov/19
Commented by liki last updated on 24/Nov/19
... sory mr w,i tried to this qns according   to your idea but i didn′t get the answer so    plz assist me!
$$…\:{sory}\:{mr}\:{w},{i}\:{tried}\:{to}\:{this}\:{qns}\:{according} \\ $$$$\:{to}\:{your}\:{idea}\:{but}\:{i}\:{didn}'{t}\:{get}\:{the}\:{answer}\:{so}\: \\ $$$$\:{plz}\:{assist}\:{me}! \\ $$
Commented by liki last updated on 24/Nov/19
Qn 1(a)
$${Qn}\:\mathrm{1}\left({a}\right) \\ $$
Answered by mr W last updated on 24/Nov/19
GCF(36,48,x)=12=2^2 ×3^1   LCM(36,48,x)=432=2^4 ×3^3     36=2^2 ×3^2   48=2^4 ×3^1   x=2^(2...4) ×3^3   x_1 =2^2 ×3^3 =108  x_2 =2^3 ×3^3 =216  x_3 =2^4 ×3^3 =432
$${GCF}\left(\mathrm{36},\mathrm{48},{x}\right)=\mathrm{12}=\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{1}} \\ $$$${LCM}\left(\mathrm{36},\mathrm{48},{x}\right)=\mathrm{432}=\mathrm{2}^{\mathrm{4}} ×\mathrm{3}^{\mathrm{3}} \\ $$$$ \\ $$$$\mathrm{36}=\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{2}} \\ $$$$\mathrm{48}=\mathrm{2}^{\mathrm{4}} ×\mathrm{3}^{\mathrm{1}} \\ $$$${x}=\mathrm{2}^{\mathrm{2}…\mathrm{4}} ×\mathrm{3}^{\mathrm{3}} \\ $$$${x}_{\mathrm{1}} =\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{3}} =\mathrm{108} \\ $$$${x}_{\mathrm{2}} =\mathrm{2}^{\mathrm{3}} ×\mathrm{3}^{\mathrm{3}} =\mathrm{216} \\ $$$${x}_{\mathrm{3}} =\mathrm{2}^{\mathrm{4}} ×\mathrm{3}^{\mathrm{3}} =\mathrm{432} \\ $$
Commented by mr W last updated on 24/Nov/19
explanation how i solve:  (it should be easy to understand, when  you know what are LCM and GCF)    GCF(36,48,x)=12=2^2 ×3^1   each factor here (2^2  and 3^1 ) must be  included in each number, i.e.  x=2^(≥2) ×3^(≥1)     ...(i)    LCM(36,48,x)=432=2^4 ×3^3   they are the largest allowable factors  in all numbers and   each factor here (2^4  and 3^3 ) must be  included at least in one number,  2^4  is already in 48, but 3^3  is not in  48 and 36, thus it must be in x, i.e.  x=2^(≤4) ×3^3     ...(ii)    from (i) and (ii):  ⇒x=2^(2...4) ×3^3
$${explanation}\:{how}\:{i}\:{solve}: \\ $$$$\left({it}\:{should}\:{be}\:{easy}\:{to}\:{understand},\:{when}\right. \\ $$$$\left.{you}\:{know}\:{what}\:{are}\:{LCM}\:{and}\:{GCF}\right) \\ $$$$ \\ $$$${GCF}\left(\mathrm{36},\mathrm{48},{x}\right)=\mathrm{12}=\mathrm{2}^{\mathrm{2}} ×\mathrm{3}^{\mathrm{1}} \\ $$$${each}\:{factor}\:{here}\:\left(\mathrm{2}^{\mathrm{2}} \:{and}\:\mathrm{3}^{\mathrm{1}} \right)\:{must}\:{be} \\ $$$${included}\:{in}\:{each}\:{number},\:{i}.{e}. \\ $$$${x}=\mathrm{2}^{\geqslant\mathrm{2}} ×\mathrm{3}^{\geqslant\mathrm{1}} \:\:\:\:…\left({i}\right) \\ $$$$ \\ $$$${LCM}\left(\mathrm{36},\mathrm{48},{x}\right)=\mathrm{432}=\mathrm{2}^{\mathrm{4}} ×\mathrm{3}^{\mathrm{3}} \\ $$$${they}\:{are}\:{the}\:{largest}\:{allowable}\:{factors} \\ $$$${in}\:{all}\:{numbers}\:{and}\: \\ $$$${each}\:{factor}\:{here}\:\left(\mathrm{2}^{\mathrm{4}} \:{and}\:\mathrm{3}^{\mathrm{3}} \right)\:{must}\:{be} \\ $$$${included}\:{at}\:{least}\:{in}\:{one}\:{number}, \\ $$$$\mathrm{2}^{\mathrm{4}} \:{is}\:{already}\:{in}\:\mathrm{48},\:{but}\:\mathrm{3}^{\mathrm{3}} \:{is}\:{not}\:{in} \\ $$$$\mathrm{48}\:{and}\:\mathrm{36},\:{thus}\:{it}\:{must}\:{be}\:{in}\:{x},\:{i}.{e}. \\ $$$${x}=\mathrm{2}^{\leqslant\mathrm{4}} ×\mathrm{3}^{\mathrm{3}} \:\:\:\:…\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\Rightarrow{x}=\mathrm{2}^{\mathrm{2}…\mathrm{4}} ×\mathrm{3}^{\mathrm{3}} \\ $$
Commented by liki last updated on 25/Nov/19
...Thank you sir,,very technical question
$$…{Thank}\:{you}\:{sir},,{very}\:{technical}\:{question} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *