Menu Close

Question-74698




Question Number 74698 by ajfour last updated on 29/Nov/19
Commented by ajfour last updated on 29/Nov/19
If AB^(⌢)  =AE^(⌢)  = DE^(⌢)  .  Find equation of circle.
$${If}\:\overset{\frown} {{AB}}\:=\overset{\frown} {{AE}}\:=\:\overset{\frown} {{DE}}\:. \\ $$$${Find}\:{equation}\:{of}\:{circle}. \\ $$
Answered by ajfour last updated on 29/Nov/19
Let  C(0,c) .  ∠DCE = 60° .  let radius be r.  E(((r(√3))/2), c+(r/2))  c+(r/2)= ((3r^2 )/4)           .....(i)  c = rsin 30° = (r/2)    ....(ii)  ⇒  r = (4/3) ,  c = (2/3) .  Eq. of circle :    x^2 +(y−(2/3))^2  = ((16)/3)  or     9x^2 +9y^2 −12y−44 = 0 .
$${Let}\:\:{C}\left(\mathrm{0},{c}\right)\:.\:\:\angle{DCE}\:=\:\mathrm{60}°\:. \\ $$$${let}\:{radius}\:{be}\:{r}. \\ $$$${E}\left(\frac{{r}\sqrt{\mathrm{3}}}{\mathrm{2}},\:{c}+\frac{{r}}{\mathrm{2}}\right) \\ $$$${c}+\frac{{r}}{\mathrm{2}}=\:\frac{\mathrm{3}{r}^{\mathrm{2}} }{\mathrm{4}}\:\:\:\:\:\:\:\:\:\:\:…..\left({i}\right) \\ $$$${c}\:=\:{r}\mathrm{sin}\:\mathrm{30}°\:=\:\frac{{r}}{\mathrm{2}}\:\:\:\:….\left({ii}\right) \\ $$$$\Rightarrow\:\:{r}\:=\:\frac{\mathrm{4}}{\mathrm{3}}\:,\:\:{c}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:. \\ $$$${Eq}.\:{of}\:{circle}\:: \\ $$$$\:\:{x}^{\mathrm{2}} +\left({y}−\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{16}}{\mathrm{3}} \\ $$$${or}\:\:\:\:\:\mathrm{9}{x}^{\mathrm{2}} +\mathrm{9}{y}^{\mathrm{2}} −\mathrm{12}{y}−\mathrm{44}\:=\:\mathrm{0}\:. \\ $$
Answered by mind is power last updated on 29/Nov/19
⇒∠DCE=∠ECA=∠ACD=(π/3)  OC=AC cos((π/3))=(R/2)  C(0,(R/2))  E=(Rcos((π/6)),Rsin((π/6))+(R/2))  E(R((√3)/2),R)∈y=x^2 ⇒(R((√3)/2))^2 =R⇒R(1−R.(3/4))=0⇒R=(4/3)
$$\Rightarrow\angle\mathrm{DCE}=\angle\mathrm{ECA}=\angle\mathrm{ACD}=\frac{\pi}{\mathrm{3}} \\ $$$$\mathrm{OC}=\mathrm{AC}\:\mathrm{cos}\left(\frac{\pi}{\mathrm{3}}\right)=\frac{\mathrm{R}}{\mathrm{2}} \\ $$$$\mathrm{C}\left(\mathrm{0},\frac{\mathrm{R}}{\mathrm{2}}\right) \\ $$$$\mathrm{E}=\left(\mathrm{Rcos}\left(\frac{\pi}{\mathrm{6}}\right),\mathrm{Rsin}\left(\frac{\pi}{\mathrm{6}}\right)+\frac{\mathrm{R}}{\mathrm{2}}\right) \\ $$$$\mathrm{E}\left(\mathrm{R}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}},\mathrm{R}\right)\in\mathrm{y}=\mathrm{x}^{\mathrm{2}} \Rightarrow\left(\mathrm{R}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{R}\Rightarrow\mathrm{R}\left(\mathrm{1}−\mathrm{R}.\frac{\mathrm{3}}{\mathrm{4}}\right)=\mathrm{0}\Rightarrow\mathrm{R}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *