Menu Close

Question-74712




Question Number 74712 by aliesam last updated on 29/Nov/19
Commented by MJS last updated on 29/Nov/19
easy solutions  x=y=1  x=y=−2  no other real solutions  (1)−(2) and dividing by x^2  leads to  y^2 −(5/x^2 )y−x^2 +(5/x)=0  ⇒ y=x∨y=((5−x^3 )/x^2 )  inserting y=x  x^4 +5x−6=0  (x−1)(x+2)(x^2 −x+3)=0  ⇒ x=y=1∨x=y=−2∨x=y=(1/2)±((√(11))/2)i  inserting y=((5−x^3 )/x^2 )  ((x^6 −5x^3 −6x^2 +25)/x^2 )=0  ⇒ no real solution
$$\mathrm{easy}\:\mathrm{solutions} \\ $$$${x}={y}=\mathrm{1} \\ $$$${x}={y}=−\mathrm{2} \\ $$$$\mathrm{no}\:\mathrm{other}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$\left(\mathrm{1}\right)−\left(\mathrm{2}\right)\:\mathrm{and}\:\mathrm{dividing}\:\mathrm{by}\:{x}^{\mathrm{2}} \:\mathrm{leads}\:\mathrm{to} \\ $$$${y}^{\mathrm{2}} −\frac{\mathrm{5}}{{x}^{\mathrm{2}} }{y}−{x}^{\mathrm{2}} +\frac{\mathrm{5}}{{x}}=\mathrm{0} \\ $$$$\Rightarrow\:{y}={x}\vee{y}=\frac{\mathrm{5}−{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} } \\ $$$$\mathrm{inserting}\:{y}={x} \\ $$$${x}^{\mathrm{4}} +\mathrm{5}{x}−\mathrm{6}=\mathrm{0} \\ $$$$\left({x}−\mathrm{1}\right)\left({x}+\mathrm{2}\right)\left({x}^{\mathrm{2}} −{x}+\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{x}={y}=\mathrm{1}\vee{x}={y}=−\mathrm{2}\vee{x}={y}=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{inserting}\:{y}=\frac{\mathrm{5}−{x}^{\mathrm{3}} }{{x}^{\mathrm{2}} } \\ $$$$\frac{{x}^{\mathrm{6}} −\mathrm{5}{x}^{\mathrm{3}} −\mathrm{6}{x}^{\mathrm{2}} +\mathrm{25}}{{x}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{no}\:\mathrm{real}\:\mathrm{solution} \\ $$
Commented by aliesam last updated on 30/Nov/19
thank you sir but i have tow questions    1)can we solve the first equation without using rational root theorm     2)how did you now that the second equation has no solution in R    and thank you very much
$${thank}\:{you}\:{sir}\:{but}\:{i}\:{have}\:{tow}\:{questions} \\ $$$$ \\ $$$$\left.\mathrm{1}\right){can}\:{we}\:{solve}\:{the}\:{first}\:{equation}\:{without}\:{using}\:{rational}\:{root}\:{theorm}\: \\ $$$$ \\ $$$$\left.\mathrm{2}\right){how}\:{did}\:{you}\:{now}\:{that}\:{the}\:{second}\:{equation}\:{has}\:{no}\:{solution}\:{in}\:{R} \\ $$$$ \\ $$$${and}\:{thank}\:{you}\:{very}\:{much} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *