Menu Close

Question-74720




Question Number 74720 by chess1 last updated on 29/Nov/19
Commented by mathmax by abdo last updated on 29/Nov/19
changement (√((x−1)/(x+1))) =t give x−1 =t^2 (x+1) ⇒(1−t^2 )x=1+t^2  ⇒  x=((1+t^2 )/(1−t^2 )) ⇒(dx/dt) =((2t(1−t^2 )−(1+t^2 )(−2t))/((1−t^2 )^2 )) =((2t−2t^3 +2t +2t^3 )/((t^2 −1)^2 ))  =((4t)/((t^2 −1)^2 )) ⇒∫ (√((x−1)/(x+1)))dx =4∫(t^2 /((t^2 −1)^2 ))dt  let decompose  F(t)=(t^2 /((t^2 −1)^2 )) ⇒F(t)=(t^2 /((t+1)^2 (t−1)^2 ))  =(a/(t+1)) +(b/((t+1)^2 )) +(c/(t−1)) +(d/((t−1)^2 ))  F(−t)=F(t) ⇒((−a)/(t−1)) +(b/((t−1)^2 )) −(c/(t+1)) +(d/((t+1)^2 )) =(a/(t+1)) +(b/((t+1)^2 ))  +(c/(t−1)) +(d/((t−1)^2 )) ⇒c=−a and b=d ⇒  F(t)=(a/(t+1)) +(b/((t+1)^2 ))−(a/(t−1)) +(b/((t−1)^2 ))  b=(t+1)^2 F(t)∣_(t=−1) =(1/4) ⇒F(t)=(a/(t+1)) +(1/(4(t+1)^2 ))−(a/(t−1)) +(1/(4(t−1)^2 ))  F(0)=0 =a+(1/4) +a+(1/4) =2a+(1/2) ⇒2a=−(1/2) ⇒a=−(1/4) ⇒  F(t)=(1/(4(t−1)))−(1/(4(t+1))) +(1/(4(t+1)^2 )) +(1/(4(t−1)^2 )) ⇒  ∫(√((x−1)/(x+1)))dx =∫  (dt/(t−1))−∫ (dt/(t+1)) +∫  (dt/((t+1)^2 )) +∫ (dt/((t−1)^2 ))  =ln∣t−1∣−ln∣t+1∣−(1/(t+1))−(1/(t−1)) +C  =ln∣((t−1)/(t+1))∣−((1/(t+1))+(1/(t−1))) +C =ln∣((t−1)/(t+1))∣−((2t)/(t^2 −1)) +C  =ln∣(((√((x−1)/(x+1 )))−1)/( (√((x−1)/(x+1)))+1))∣−((2(√((x−1)/(x+1))))/(((x−1)/(x+1))−1)) +C  =ln∣(((√((x−1)/(x+1)))−1)/( (√((x−1)/(x+1)))+1))∣ +(x+1)(√((x−1)/(x+1 ))) + C .
changementx1x+1=tgivex1=t2(x+1)(1t2)x=1+t2x=1+t21t2dxdt=2t(1t2)(1+t2)(2t)(1t2)2=2t2t3+2t+2t3(t21)2=4t(t21)2x1x+1dx=4t2(t21)2dtletdecomposeF(t)=t2(t21)2F(t)=t2(t+1)2(t1)2=at+1+b(t+1)2+ct1+d(t1)2F(t)=F(t)at1+b(t1)2ct+1+d(t+1)2=at+1+b(t+1)2+ct1+d(t1)2c=aandb=dF(t)=at+1+b(t+1)2at1+b(t1)2b=(t+1)2F(t)t=1=14F(t)=at+1+14(t+1)2at1+14(t1)2F(0)=0=a+14+a+14=2a+122a=12a=14F(t)=14(t1)14(t+1)+14(t+1)2+14(t1)2x1x+1dx=dtt1dtt+1+dt(t+1)2+dt(t1)2=lnt1lnt+11t+11t1+C=lnt1t+1(1t+1+1t1)+C=lnt1t+12tt21+C=lnx1x+11x1x+1+12x1x+1x1x+11+C=lnx1x+11x1x+1+1+(x+1)x1x+1+C.
Commented by mathmax by abdo last updated on 29/Nov/19
we can simplify we get   ∫  (√((x−1)/(x+1)))dx =ln∣(((√(x−1))−(√(x+1)))/( (√(x−1)) +(√(x+1))))∣+(√(x^2 −1)) +C .
wecansimplifywegetx1x+1dx=lnx1x+1x1+x+1+x21+C.
Commented by chess1 last updated on 30/Nov/19
thanks
thanks
Commented by mathmax by abdo last updated on 30/Nov/19
you are welcome.
youarewelcome.
Commented by mathmax by abdo last updated on 06/Dec/19
another way  we use the changement x =ch(2t) ⇒  I =∫(√((ch(2t)−1)/(ch(2t)+1)))2sh(2t)dt =2∫  (√((2sh^2 (t))/(2ch^2 (t))))ch(2t)dt  =2 ∫  th(t)2sh(t)ch(t)dt =4 ∫  ((sh(t))/(ch(t)))sh(t)ch(t)dt  =4 ∫ sh^2 t dt =4 ∫((ch(2t)−1)/2)dt =2 ∫ ch(2t)dt−2t  =sh(2t)−2t +c  =(√(ch^2 (2t)−1)) −argch(x) +c  =(√(x^2 −1)) −ln(x+(√(x^2 −1))) +c
anotherwayweusethechangementx=ch(2t)I=ch(2t)1ch(2t)+12sh(2t)dt=22sh2(t)2ch2(t)ch(2t)dt=2th(t)2sh(t)ch(t)dt=4sh(t)ch(t)sh(t)ch(t)dt=4sh2tdt=4ch(2t)12dt=2ch(2t)dt2t=sh(2t)2t+c=ch2(2t)1argch(x)+c=x21ln(x+x21)+c
Answered by Tanmay chaudhury last updated on 29/Nov/19
∫((x−1)/( (√(x^2 −1))))dx  (1/2)∫((d(x^2 −1))/((x^2 −1)^(1/2) ))−∫(dx/( (√(x^2 −1))))  I_1 =(1/2)×(((x^2 −1)^(((−1)/2)+1) )/(((−1)/2)+1))+c_1 ⇛(x^2 −1)^(1/2) +c_1   I_2 =∫(dx/( (√(x^2 −1))))   let x=secα  dx=secαtanαdα  =∫((secαtanαdα)/(tanα))=∫secαdα=ln(secα+tanα)+c_2   =ln(x+(√(x^2 −1)) )+c_2
x1x21dx12d(x21)(x21)12dxx21I1=12×(x21)12+112+1+c1(x21)12+c1I2=dxx21letx=secαdx=secαtanαdα=secαtanαdαtanα=secαdα=ln(secα+tanα)+c2=ln(x+x21)+c2
Commented by chess1 last updated on 30/Nov/19
thanks
thanks
Answered by Kunal12588 last updated on 30/Nov/19
I=∫(√((x−1)/(x+1)))dx=∫((x−1)/( (√(x^2 −1))))dx  =∫(x/( (√(x^2 −1))))dx−∫(dx/( (√(x^2 −1))))  =(1/2)∫((2x)/( (√(x^2 −1))))dx−log∣x+(√(x^2 −1))∣+C  let x^2 −1=t⇒2xdx=dt  I=(1/2)∫(dt/( (√t)))−log∣x+(√(x^2 −1))∣+C  =(1/2)(((√t)/(1/2)))−log∣x+(√(x^2 −1))∣+C  =(√(x^2 −1))−log∣x+(√(x^2 −1))∣+C
I=x1x+1dx=x1x21dx=xx21dxdxx21=122xx21dxlogx+x21+Cletx21=t2xdx=dtI=12dttlogx+x21+C=12(t1/2)logx+x21+C=x21logx+x21+C

Leave a Reply

Your email address will not be published. Required fields are marked *