Menu Close

Question-74882




Question Number 74882 by ajfour last updated on 03/Dec/19
Commented by ajfour last updated on 03/Dec/19
If each small blue triangles  have the same area, and each  small quadrilaterals have the  same area, find ratio of length  to breadth of the outer rectangle.
$${If}\:{each}\:{small}\:{blue}\:{triangles} \\ $$$${have}\:{the}\:{same}\:{area},\:{and}\:{each} \\ $$$${small}\:{quadrilaterals}\:{have}\:{the} \\ $$$${same}\:{area},\:{find}\:{ratio}\:{of}\:{length} \\ $$$${to}\:{breadth}\:{of}\:{the}\:{outer}\:{rectangle}. \\ $$
Commented by mind is power last updated on 03/Dec/19
Op.a=1.CS⇒CS=a.op  OA.AQ=CB.CS⇒QA=CS=a.op  (BQ)//(OS),QA=CS⇒OS=BQ...E  E⇒OSBQ parallelogram⇒BS=OQ  ⇒∠QOP=∠RBS  sinceSame area⇒BG=OE withe same angle  ⇒RG=EP  Same idea ⇒CRAP parellograme  1conclusion  OP^→ =RB^→ ,  PA^→ =CR^→   OS^→ =Q^→ B,BG^→ =EO^→ ,HS^→ =QF^→   P(p,0)    A(1,0), S(0,s), C(0,a)  B(1,a)  AQ^→ =SC^→ ⇒Q(1,a−s)  R(1−p,a)  (OQ) equatin :y=(a−s)x  (SB) y=(a−s)x+s  (CP):y=−(a/p)x+a  (RA)=−(a/p)x+(a/p)  E=(OQ)∩(CP)⇒(a−s)x=−(a/p)x+a  ⇒x=((ap)/(ap+a−ps)),y=((ap(a−s))/(ap+a−ps))  F=(OQ)∩(RA)⇒(a−s)x=((−ax+a)/p)  ⇒x=(a/(ap+a−sp)),y=((a(a−s))/(ap+a−sp))  H=(SB)∩(CP)⇒(a−s)x+s=((−a)/p)x+a  ⇒((p(a−s))/(pa+a−sp))=x,y=((−a(a−s)+a(ap+a−sp))/(pa+a−sp))  =((a(s+ap−sp))/(pa+a−sp))  G=(RA)∩(SB)⇒((−ax)/p)+(a/p)=(a−s)x+s  ⇒x=((a−ps)/(ap+a−sp)),y=((−a^2 +aps+a^2 p+a^2 −aps)/(p(ap−sp+a)))=(a^2 /((ap−sp+a)))  (1/2)Det(QF^→ ,QA^→ )=(1/2)Det(OP^→ ,OE^→ )  QF^→ (((−ap+sp)/(ap+a−sp)),(((a−s)(ps−ap))/(ap+a−sp)))  QA^→ =(0,s−a)  ⇒((p(s−a)^2 )/(ap−sp+a))=(((ap^2 (a−s))/(ap−sp+a)))  ⇒(s−a)=−ap  ⇒p=((a−s)/a)  too bee continued  2 other equation  to use  det(pA^→ ,PE^→ )=det(BQ^→ ,BG^→ )=det(GH^→ ,GF^→ )
$$\mathrm{Op}.\mathrm{a}=\mathrm{1}.\mathrm{CS}\Rightarrow\mathrm{CS}=\mathrm{a}.\mathrm{op} \\ $$$$\mathrm{OA}.\mathrm{AQ}=\mathrm{CB}.\mathrm{CS}\Rightarrow\mathrm{QA}=\mathrm{CS}=\mathrm{a}.\mathrm{op} \\ $$$$\left(\mathrm{BQ}\right)//\left(\mathrm{OS}\right),\mathrm{QA}=\mathrm{CS}\Rightarrow\mathrm{OS}=\mathrm{BQ}…\mathrm{E} \\ $$$$\mathrm{E}\Rightarrow\mathrm{OSBQ}\:\mathrm{parallelogram}\Rightarrow\mathrm{BS}=\mathrm{OQ} \\ $$$$\Rightarrow\angle\mathrm{QOP}=\angle\mathrm{RBS} \\ $$$$\mathrm{sinceSame}\:\mathrm{area}\Rightarrow\mathrm{BG}=\mathrm{OE}\:\mathrm{withe}\:\mathrm{same}\:\mathrm{angle} \\ $$$$\Rightarrow\mathrm{RG}=\mathrm{EP} \\ $$$$\mathrm{Same}\:\mathrm{idea}\:\Rightarrow\mathrm{CRAP}\:\mathrm{parellograme} \\ $$$$\mathrm{1conclusion} \\ $$$$\mathrm{O}\overset{\rightarrow} {\mathrm{P}}=\mathrm{R}\overset{\rightarrow} {\mathrm{B}},\:\:\mathrm{P}\overset{\rightarrow} {\mathrm{A}}=\mathrm{C}\overset{\rightarrow} {\mathrm{R}} \\ $$$$\mathrm{O}\overset{\rightarrow} {\mathrm{S}}=\overset{\rightarrow} {\mathrm{Q}B},\mathrm{B}\overset{\rightarrow} {\mathrm{G}}=\mathrm{E}\overset{\rightarrow} {\mathrm{O}},\mathrm{H}\overset{\rightarrow} {\mathrm{S}}=\mathrm{Q}\overset{\rightarrow} {\mathrm{F}} \\ $$$$\mathrm{P}\left(\mathrm{p},\mathrm{0}\right)\:\:\:\:\mathrm{A}\left(\mathrm{1},\mathrm{0}\right),\:\mathrm{S}\left(\mathrm{0},\mathrm{s}\right),\:\mathrm{C}\left(\mathrm{0},\mathrm{a}\right) \\ $$$$\mathrm{B}\left(\mathrm{1},\mathrm{a}\right) \\ $$$$\mathrm{A}\overset{\rightarrow} {\mathrm{Q}}=\mathrm{S}\overset{\rightarrow} {\mathrm{C}}\Rightarrow\mathrm{Q}\left(\mathrm{1},\mathrm{a}−\mathrm{s}\right) \\ $$$$\mathrm{R}\left(\mathrm{1}−\mathrm{p},\mathrm{a}\right) \\ $$$$\left(\mathrm{OQ}\right)\:\mathrm{equatin}\::\mathrm{y}=\left(\mathrm{a}−\mathrm{s}\right)\mathrm{x} \\ $$$$\left(\mathrm{SB}\right)\:\mathrm{y}=\left(\mathrm{a}−\mathrm{s}\right)\mathrm{x}+\mathrm{s} \\ $$$$\left(\mathrm{CP}\right):\mathrm{y}=−\frac{\mathrm{a}}{\mathrm{p}}\mathrm{x}+\mathrm{a} \\ $$$$\left(\mathrm{RA}\right)=−\frac{\mathrm{a}}{\mathrm{p}}\mathrm{x}+\frac{\mathrm{a}}{\mathrm{p}} \\ $$$$\mathrm{E}=\left(\mathrm{OQ}\right)\cap\left(\mathrm{CP}\right)\Rightarrow\left(\mathrm{a}−\mathrm{s}\right)\mathrm{x}=−\frac{\mathrm{a}}{\mathrm{p}}\mathrm{x}+\mathrm{a} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{ap}}{\mathrm{ap}+\mathrm{a}−\mathrm{ps}},\mathrm{y}=\frac{\mathrm{ap}\left(\mathrm{a}−\mathrm{s}\right)}{\mathrm{ap}+\mathrm{a}−\mathrm{ps}} \\ $$$$\mathrm{F}=\left(\mathrm{OQ}\right)\cap\left(\mathrm{RA}\right)\Rightarrow\left(\mathrm{a}−\mathrm{s}\right)\mathrm{x}=\frac{−\mathrm{ax}+\mathrm{a}}{\mathrm{p}} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{a}}{\mathrm{ap}+\mathrm{a}−\mathrm{sp}},\mathrm{y}=\frac{\mathrm{a}\left(\mathrm{a}−\mathrm{s}\right)}{\mathrm{ap}+\mathrm{a}−\mathrm{sp}} \\ $$$$\mathrm{H}=\left(\mathrm{SB}\right)\cap\left(\mathrm{CP}\right)\Rightarrow\left(\mathrm{a}−\mathrm{s}\right)\mathrm{x}+\mathrm{s}=\frac{−\mathrm{a}}{\mathrm{p}}\mathrm{x}+\mathrm{a} \\ $$$$\Rightarrow\frac{\mathrm{p}\left(\mathrm{a}−\mathrm{s}\right)}{\mathrm{pa}+\mathrm{a}−\mathrm{sp}}=\mathrm{x},\mathrm{y}=\frac{−\mathrm{a}\left(\mathrm{a}−\mathrm{s}\right)+\mathrm{a}\left(\mathrm{ap}+\mathrm{a}−\mathrm{sp}\right)}{\mathrm{pa}+\mathrm{a}−\mathrm{sp}} \\ $$$$=\frac{\mathrm{a}\left(\mathrm{s}+\mathrm{ap}−\mathrm{sp}\right)}{\mathrm{pa}+\mathrm{a}−\mathrm{sp}} \\ $$$$\mathrm{G}=\left(\mathrm{RA}\right)\cap\left(\mathrm{SB}\right)\Rightarrow\frac{−\mathrm{ax}}{\mathrm{p}}+\frac{\mathrm{a}}{\mathrm{p}}=\left(\mathrm{a}−\mathrm{s}\right)\mathrm{x}+\mathrm{s} \\ $$$$\Rightarrow\mathrm{x}=\frac{\mathrm{a}−\mathrm{ps}}{\mathrm{ap}+\mathrm{a}−\mathrm{sp}},\mathrm{y}=\frac{−\mathrm{a}^{\mathrm{2}} +\mathrm{aps}+\mathrm{a}^{\mathrm{2}} \mathrm{p}+\mathrm{a}^{\mathrm{2}} −\mathrm{aps}}{\mathrm{p}\left(\mathrm{ap}−\mathrm{sp}+\mathrm{a}\right)}=\frac{\mathrm{a}^{\mathrm{2}} }{\left(\mathrm{ap}−\mathrm{sp}+\mathrm{a}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Det}\left(\mathrm{Q}\overset{\rightarrow} {\mathrm{F}},\mathrm{Q}\overset{\rightarrow} {\mathrm{A}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Det}\left(\mathrm{O}\overset{\rightarrow} {\mathrm{P}},\mathrm{O}\overset{\rightarrow} {\mathrm{E}}\right) \\ $$$$\mathrm{Q}\overset{\rightarrow} {\mathrm{F}}\left(\frac{−\mathrm{ap}+\mathrm{sp}}{\mathrm{ap}+\mathrm{a}−\mathrm{sp}},\frac{\left(\mathrm{a}−\mathrm{s}\right)\left(\mathrm{ps}−\mathrm{ap}\right)}{\mathrm{ap}+\mathrm{a}−\mathrm{sp}}\right) \\ $$$$\mathrm{Q}\overset{\rightarrow} {\mathrm{A}}=\left(\mathrm{0},\mathrm{s}−\mathrm{a}\right) \\ $$$$\Rightarrow\frac{\mathrm{p}\left(\mathrm{s}−\mathrm{a}\right)^{\mathrm{2}} }{\mathrm{ap}−\mathrm{sp}+\mathrm{a}}=\left(\frac{\mathrm{ap}^{\mathrm{2}} \left(\mathrm{a}−\mathrm{s}\right)}{\mathrm{ap}−\mathrm{sp}+\mathrm{a}}\right) \\ $$$$\Rightarrow\left(\mathrm{s}−\mathrm{a}\right)=−\mathrm{ap} \\ $$$$\Rightarrow\mathrm{p}=\frac{\mathrm{a}−\mathrm{s}}{\mathrm{a}} \\ $$$$\mathrm{too}\:\mathrm{bee}\:\mathrm{continued} \\ $$$$\mathrm{2}\:\mathrm{other}\:\mathrm{equation} \\ $$$$\mathrm{to}\:\mathrm{use} \\ $$$$\mathrm{det}\left(\mathrm{p}\overset{\rightarrow} {\mathrm{A}},\mathrm{P}\overset{\rightarrow} {\mathrm{E}}\right)=\mathrm{det}\left(\mathrm{B}\overset{\rightarrow} {\mathrm{Q}},\mathrm{B}\overset{\rightarrow} {\mathrm{G}}\right)=\mathrm{det}\left(\mathrm{G}\overset{\rightarrow} {\mathrm{H}},\mathrm{G}\overset{\rightarrow} {\mathrm{F}}\right) \\ $$
Commented by ajfour last updated on 03/Dec/19
Answered by mr W last updated on 03/Dec/19
Commented by mr W last updated on 03/Dec/19
(f/e)=(c/(a+b))  af=c×(c/(c+d))×e  ⇒(f/e)=(c^2 /(a(c+d)))  (c/(a+b))=(c^2 /(a(c+d)))  ⇒(a/(a+b))=(c/(c+d))  ⇒(a/b)=(c/d)=k  (1/2)[(((a+b)^2 f)/a)−af]=(((a+b)d)/3)  ⇒f=((2(a+b)ad)/(3(2a+b)b))=((2k(k+1)d)/(3(2k+1)))  ⇒e=((2(k+1)^2 b)/(3(2k+1)))  (f/(a−e))=((c+d)/a)  ⇒(((2k)/(3(2k+1)))/(k−((2(k+1)^2 )/(3(2k+1)))))=(1/k)  ⇒2k^2 −k−2=0  ⇒k=((1+(√(17)))/4)≈1.28  (k/(k+1))=((1+(√(17)))/(5+(√(17))))=(((√(17))−3)/2)≈0.56  i.e. the ratio of side lengthes of the  outer rectangle can be of any value.  the condition is only  (a/b)=(c/d)=((1+(√(17)))/4)  or  (a/(a+b))=(c/(c+d))=(((√(17))−3)/2)
$$\frac{{f}}{{e}}=\frac{{c}}{{a}+{b}} \\ $$$${af}={c}×\frac{{c}}{{c}+{d}}×{e} \\ $$$$\Rightarrow\frac{{f}}{{e}}=\frac{{c}^{\mathrm{2}} }{{a}\left({c}+{d}\right)} \\ $$$$\frac{{c}}{{a}+{b}}=\frac{{c}^{\mathrm{2}} }{{a}\left({c}+{d}\right)} \\ $$$$\Rightarrow\frac{{a}}{{a}+{b}}=\frac{{c}}{{c}+{d}} \\ $$$$\Rightarrow\frac{{a}}{{b}}=\frac{{c}}{{d}}={k} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\left({a}+{b}\right)^{\mathrm{2}} {f}}{{a}}−{af}\right]=\frac{\left({a}+{b}\right){d}}{\mathrm{3}} \\ $$$$\Rightarrow{f}=\frac{\mathrm{2}\left({a}+{b}\right){ad}}{\mathrm{3}\left(\mathrm{2}{a}+{b}\right){b}}=\frac{\mathrm{2}{k}\left({k}+\mathrm{1}\right){d}}{\mathrm{3}\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$\Rightarrow{e}=\frac{\mathrm{2}\left({k}+\mathrm{1}\right)^{\mathrm{2}} {b}}{\mathrm{3}\left(\mathrm{2}{k}+\mathrm{1}\right)} \\ $$$$\frac{{f}}{{a}−{e}}=\frac{{c}+{d}}{{a}} \\ $$$$\Rightarrow\frac{\frac{\mathrm{2}{k}}{\mathrm{3}\left(\mathrm{2}{k}+\mathrm{1}\right)}}{{k}−\frac{\mathrm{2}\left({k}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}\left(\mathrm{2}{k}+\mathrm{1}\right)}}=\frac{\mathrm{1}}{{k}} \\ $$$$\Rightarrow\mathrm{2}{k}^{\mathrm{2}} −{k}−\mathrm{2}=\mathrm{0} \\ $$$$\Rightarrow{k}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{4}}\approx\mathrm{1}.\mathrm{28} \\ $$$$\frac{{k}}{{k}+\mathrm{1}}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{5}+\sqrt{\mathrm{17}}}=\frac{\sqrt{\mathrm{17}}−\mathrm{3}}{\mathrm{2}}\approx\mathrm{0}.\mathrm{56} \\ $$$${i}.{e}.\:{the}\:{ratio}\:{of}\:{side}\:{lengthes}\:{of}\:{the} \\ $$$${outer}\:{rectangle}\:{can}\:{be}\:{of}\:{any}\:{value}. \\ $$$${the}\:{condition}\:{is}\:{only} \\ $$$$\frac{{a}}{{b}}=\frac{{c}}{{d}}=\frac{\mathrm{1}+\sqrt{\mathrm{17}}}{\mathrm{4}} \\ $$$${or} \\ $$$$\frac{{a}}{{a}+{b}}=\frac{{c}}{{c}+{d}}=\frac{\sqrt{\mathrm{17}}−\mathrm{3}}{\mathrm{2}} \\ $$
Commented by ajfour last updated on 03/Dec/19
sir could i make the question  clear ?  the small blue triangles  have the same area.  The four pink quadrilaterals  and the central one have an  equal other area.  What is the ratio of length of  the outer rectangle to its breadth?
$${sir}\:{could}\:{i}\:{make}\:{the}\:{question} \\ $$$${clear}\:?\:\:{the}\:{small}\:{blue}\:{triangles} \\ $$$${have}\:{the}\:{same}\:{area}. \\ $$$${The}\:{four}\:{pink}\:{quadrilaterals} \\ $$$${and}\:{the}\:{central}\:{one}\:{have}\:{an} \\ $$$${equal}\:{other}\:{area}. \\ $$$${What}\:{is}\:{the}\:{ratio}\:{of}\:{length}\:{of} \\ $$$${the}\:{outer}\:{rectangle}\:{to}\:{its}\:{breadth}? \\ $$$$ \\ $$
Commented by mr W last updated on 04/Dec/19
thank you sir for clarifying!  i have modified my answer.  the ratio of lengthes of the rectangle  can be of any value. but the sides   must be divided with a certain ratio.
$${thank}\:{you}\:{sir}\:{for}\:{clarifying}! \\ $$$${i}\:{have}\:{modified}\:{my}\:{answer}. \\ $$$${the}\:{ratio}\:{of}\:{lengthes}\:{of}\:{the}\:{rectangle} \\ $$$${can}\:{be}\:{of}\:{any}\:{value}.\:{but}\:{the}\:{sides}\: \\ $$$${must}\:{be}\:{divided}\:{with}\:{a}\:{certain}\:{ratio}. \\ $$
Commented by mr W last updated on 04/Dec/19
A_(red) =(((a+b)d)/3)=(((k+1)bd)/3)  A_(blue) =((af)/2)=(k^2 /((2k+1)))×(((k+1)bd)/3)  ⇒(A_(red) /A_(blue) )=((2k+1)/k^2 )=((3(√(17))+5)/8)≈2.17  i.e. the ratio of area of a blue triangle  to that of a red zone is independent  from the ratio of side lengthes of the  outer rectangle.  it′s not possible that  a triangle area is equal to that of a  red area.
$${A}_{{red}} =\frac{\left({a}+{b}\right){d}}{\mathrm{3}}=\frac{\left({k}+\mathrm{1}\right){bd}}{\mathrm{3}} \\ $$$${A}_{{blue}} =\frac{{af}}{\mathrm{2}}=\frac{{k}^{\mathrm{2}} }{\left(\mathrm{2}{k}+\mathrm{1}\right)}×\frac{\left({k}+\mathrm{1}\right){bd}}{\mathrm{3}} \\ $$$$\Rightarrow\frac{{A}_{{red}} }{{A}_{{blue}} }=\frac{\mathrm{2}{k}+\mathrm{1}}{{k}^{\mathrm{2}} }=\frac{\mathrm{3}\sqrt{\mathrm{17}}+\mathrm{5}}{\mathrm{8}}\approx\mathrm{2}.\mathrm{17} \\ $$$${i}.{e}.\:{the}\:{ratio}\:{of}\:{area}\:{of}\:{a}\:{blue}\:{triangle} \\ $$$${to}\:{that}\:{of}\:{a}\:{red}\:{zone}\:{is}\:{independent} \\ $$$${from}\:{the}\:{ratio}\:{of}\:{side}\:{lengthes}\:{of}\:{the} \\ $$$${outer}\:{rectangle}.\:\:{it}'{s}\:{not}\:{possible}\:{that} \\ $$$${a}\:{triangle}\:{area}\:{is}\:{equal}\:{to}\:{that}\:{of}\:{a} \\ $$$${red}\:{area}. \\ $$
Commented by mr W last updated on 04/Dec/19
Commented by mr W last updated on 04/Dec/19
Commented by mr W last updated on 04/Dec/19
Commented by mr W last updated on 04/Dec/19
ξ=(((√(17))−3)/2)  in each case with different (L/B),  blue triangles have same area,  red and yellow areas are equal.
$$\xi=\frac{\sqrt{\mathrm{17}}−\mathrm{3}}{\mathrm{2}} \\ $$$${in}\:{each}\:{case}\:{with}\:{different}\:\frac{{L}}{{B}}, \\ $$$${blue}\:{triangles}\:{have}\:{same}\:{area}, \\ $$$${red}\:{and}\:{yellow}\:{areas}\:{are}\:{equal}. \\ $$
Commented by ajfour last updated on 04/Dec/19
Thanks sir, totally convinced.  can the blue, yellow, and red  areas all be equal for certain  side ratio of outer rectangle, Sir?
$${Thanks}\:{sir},\:{totally}\:{convinced}. \\ $$$${can}\:{the}\:{blue},\:{yellow},\:{and}\:{red} \\ $$$${areas}\:{all}\:{be}\:{equal}\:{for}\:{certain} \\ $$$${side}\:{ratio}\:{of}\:{outer}\:{rectangle},\:{Sir}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *