Menu Close

Question-74997




Question Number 74997 by chess1 last updated on 05/Dec/19
Commented by chess1 last updated on 05/Dec/19
answer: A
answer:A
Answered by mind is power last updated on 05/Dec/19
(d^(2019) /dx^(2019) )(X^3 cos(x^2 ))∣_(x=0) =  Re{Σ_(k=0) ^(2019) C_(2019) ^k (X^3 )^((k)) .(e^(ix^2 ) )^((2019−k)) }  =C_(2019) ^3 .(6).(e^(ix^2 ) )^((2016)) ∣_(x=0)   =((2019!)/((2019−3)!)).(e^(ix^2 ) )^((2016)) x=0  e^(ix^2 ) =Σ_(j=0) ^(+∞) (((ix^2 )^j )/(j!))   (d/dx^k )e^(ix^2 ) =Σ_(j=0) ^(+∞) (d/dx^k )(((i)^j x^(2j) )/(j!))  =Σ_(j=E((k/2))) ^(+∞)     (2j)(2j−1)...(2j−k+1)(x^(2j−k) /(j!))  (d/dx^(2016) )e^(ix^2 ) =Σ_(j=1008) ^(+∞) (2j)(2j−1).....(2j−2016+1)i^j x^(2j−2018) .(1/(j!)).∣_(x=0)   =((2016.(2015).........(1)i^(1008) )/(1008!))  =((2016!)/(1008!))  We get so  Re{((2019!)/(2016!)).((2016!)/(1008!))}=((2019!)/(1008!))
d2019dx2019(X3cos(x2))x=0=Re{2019k=0C2019k(X3)(k).(eix2)(2019k)}=C20193.(6).(eix2)(2016)x=0=2019!(20193)!.(eix2)(2016)x=0eix2=+j=0(ix2)jj!ddxkeix2=+j=0ddxk(i)jx2jj!=+j=E(k2)(2j)(2j1)(2jk+1)x2jkj!ddx2016eix2=+j=1008(2j)(2j1)..(2j2016+1)ijx2j2018.1j!.x=0=2016.(2015)(1)i10081008!=2016!1008!WegetsoRe{2019!2016!.2016!1008!}=2019!1008!
Commented by vishalbhardwaj last updated on 06/Dec/19
please explain the steps of answer and their  notation of symbols used here with depth
pleaseexplainthestepsofanswerandtheirnotationofsymbolsusedherewithdepth
Commented by chess1 last updated on 06/Dec/19
thanks
thanks
Commented by mind is power last updated on 06/Dec/19
ok sir i Will post complet solution later
oksiriWillpostcompletsolutionlater

Leave a Reply

Your email address will not be published. Required fields are marked *