Menu Close

Question-7544




Question Number 7544 by Tawakalitu. last updated on 03/Sep/16
Commented by sou1618 last updated on 03/Sep/16
x=OA  OB=(√(x^2 +144))  ΔABO=(1/2)12x  ΔAOB=(1/2)3(12+x+(√(x^2 +144)))  so  12x=3(12+x+(√(x^2 +144)))  (√(x^2 +144))=3x−12  x^2 +144=9x^2 −72x+144  x(72−8x)=0  x=9  AB:AO=CE:CB  12:9=CE:12  CE=16  BE=(√(16^2 +12^2 ))=4×5=20  ΔBCE=(1/2)12×16=96  ΔBCE=(1/2)r(12+16+20)=24r  so  96=24r  r=4
x=OAOB=x2+144ΔABO=1212xΔAOB=123(12+x+x2+144)so12x=3(12+x+x2+144)x2+144=3x12x2+144=9x272x+144x(728x)=0x=9AB:AO=CE:CB12:9=CE:12CE=16BE=162+122=4×5=20ΔBCE=1212×16=96ΔBCE=12r(12+16+20)=24rso96=24rr=4
Commented by sou1618 last updated on 03/Sep/16
Commented by Tawakalitu. last updated on 03/Sep/16
Wow, i really appreciate sir. God bless you.
Wow,ireallyappreciatesir.Godblessyou.
Commented by Rasheed Soomro last updated on 03/Sep/16
I didn′t understand how ΔAOB=(1/2)3(12+x+(√(x^2 +144)))?
IdidntunderstandhowΔAOB=123(12+x+x2+144)?
Commented by sandy_suhendra last updated on 03/Sep/16
the smaller circle is called the incircle of △ AOB  the radius of an incircle : r = (A/s) ⇒ A=rs  where A is the area △AOB and s is semiperimeter of △AOB  so  s=(1/2)(AO+AB+BO)
thesmallercircleiscalledtheincircleofAOBtheradiusofanincircle:r=AsA=rswhereAistheareaAOBandsissemiperimeterofAOBsos=12(AO+AB+BO)
Commented by Rasheed Soomro last updated on 03/Sep/16
THαnkS !
THαnkS!
Commented by sandy_suhendra last updated on 03/Sep/16
using your picture and your answer for AO=9  and the rule of similarity ⇒△AOB∼△BCE  so   r : AO = R : BC ⇒r=radius of smaller circle                                                  R=radius of bigger circle          3 : 9 = R : 12 ⇒ R=4
usingyourpictureandyouranswerforAO=9andtheruleofsimilarityAOBBCEsor:AO=R:BCr=radiusofsmallercircleR=radiusofbiggercircle3:9=R:12R=4

Leave a Reply

Your email address will not be published. Required fields are marked *