Menu Close

Question-75681




Question Number 75681 by mr W last updated on 15/Dec/19
Commented by mr W last updated on 15/Dec/19
someone has posted this question,  but deleted it againfor some reason.
$${someone}\:{has}\:{posted}\:{this}\:{question}, \\ $$$${but}\:{deleted}\:{it}\:{againfor}\:{some}\:{reason}. \\ $$
Commented by mr W last updated on 15/Dec/19
i see eight possible solutions.  and you?
$${i}\:{see}\:{eight}\:{possible}\:{solutions}. \\ $$$${and}\:{you}? \\ $$
Commented by prakash jain last updated on 15/Dec/19
Can u please share solution?  How do you get even number by  summing 3 odd numbers.
$$\mathrm{Can}\:\mathrm{u}\:\mathrm{please}\:\mathrm{share}\:\mathrm{solution}? \\ $$$$\mathrm{How}\:\mathrm{do}\:\mathrm{you}\:\mathrm{get}\:\mathrm{even}\:\mathrm{number}\:\mathrm{by} \\ $$$$\mathrm{summing}\:\mathrm{3}\:\mathrm{odd}\:\mathrm{numbers}. \\ $$
Commented by $@ty@m123 last updated on 15/Dec/19
There are many possible solutions  to this questions.  One of them is:  10,3+10,7+9  (Remark: , is also used as decimal)
$${There}\:{are}\:{many}\:{possible}\:{solutions} \\ $$$${to}\:{this}\:{questions}. \\ $$$${One}\:{of}\:{them}\:{is}: \\ $$$$\mathrm{10},\mathrm{3}+\mathrm{10},\mathrm{7}+\mathrm{9} \\ $$$$\left({Remark}:\:,\:{is}\:{also}\:{used}\:{as}\:{decimal}\right) \\ $$
Commented by mr W last updated on 15/Dec/19
we can see, with the given odd “numbers”  it is not possible to construct three  numbers to make a sum of 30. so  i thought there must be something  special with these numbers given.  i found the special number“9” which  can be placed in the boxes in two  different ways: as normal “9” or  as “6”. this is according to the  question not forbidden. with this  idea i found following solutions:
$${we}\:{can}\:{see},\:{with}\:{the}\:{given}\:{odd}\:“{numbers}'' \\ $$$${it}\:{is}\:{not}\:{possible}\:{to}\:{construct}\:{three} \\ $$$${numbers}\:{to}\:{make}\:{a}\:{sum}\:{of}\:\mathrm{30}.\:{so} \\ $$$${i}\:{thought}\:{there}\:{must}\:{be}\:{something} \\ $$$${special}\:{with}\:{these}\:{numbers}\:{given}. \\ $$$${i}\:{found}\:{the}\:{special}\:{number}“\mathrm{9}''\:{which} \\ $$$${can}\:{be}\:{placed}\:{in}\:{the}\:{boxes}\:{in}\:{two} \\ $$$${different}\:{ways}:\:{as}\:{normal}\:“\mathrm{9}''\:{or} \\ $$$${as}\:“\mathrm{6}''.\:{this}\:{is}\:{according}\:{to}\:{the} \\ $$$${question}\:{not}\:{forbidden}.\:{with}\:{this} \\ $$$${idea}\:{i}\:{found}\:{following}\:{solutions}: \\ $$
Commented by mr W last updated on 15/Dec/19
Commented by mr W last updated on 15/Dec/19
Commented by $@ty@m123 last updated on 15/Dec/19
Honestly speaking, I got this idea  from this forum itself.  Some querist have used , in place of .  as decimal notation.  (IDK which country does s/he belong.)
$${Honestly}\:{speaking},\:{I}\:{got}\:{this}\:{idea} \\ $$$${from}\:{this}\:{forum}\:{itself}. \\ $$$${Some}\:{querist}\:{have}\:{used}\:,\:{in}\:{place}\:{of}\:. \\ $$$${as}\:{decimal}\:{notation}. \\ $$$$\left({IDK}\:{which}\:{country}\:{does}\:{s}/{he}\:{belong}.\right) \\ $$
Answered by vishalbhardwaj last updated on 15/Dec/19
(√((1+3))) + 15 +13
$$\sqrt{\left(\mathrm{1}+\mathrm{3}\right)}\:+\:\mathrm{15}\:+\mathrm{13} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *