Question Number 76169 by Master last updated on 24/Dec/19
Answered by mr W last updated on 24/Dec/19
$${yx}+\mathrm{27}{y}=\mathrm{154} \\ $$$${xy}+\mathrm{27}{x}=\mathrm{30} \\ $$$$\mathrm{2}{xy}+\mathrm{27}\left({x}+{y}\right)=\mathrm{184}\:\:\:…\left({i}\right) \\ $$$${y}−{x}=\frac{\mathrm{124}}{\mathrm{27}} \\ $$$${y}^{\mathrm{2}} +{x}^{\mathrm{2}} −\mathrm{2}{xy}=\left(\frac{\mathrm{124}}{\mathrm{27}}\right)^{\mathrm{2}} \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{4}{xy}=\left(\frac{\mathrm{124}}{\mathrm{27}}\right)^{\mathrm{2}} \:\:\:…\left({ii}\right) \\ $$$$\mathrm{2}\left({i}\right)+\left({ii}\right): \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} +\mathrm{54}\left({x}+{y}\right)−\mathrm{2}×\mathrm{184}−\left(\frac{\mathrm{124}}{\mathrm{27}}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{x}+{y}=−\mathrm{27}\pm\sqrt{\mathrm{27}^{\mathrm{2}} +\mathrm{2}×\mathrm{184}+\left(\frac{\mathrm{124}}{\mathrm{27}}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{x}+{y}=−\mathrm{27}\pm\frac{\sqrt{\mathrm{815089}}}{\mathrm{27}}=\mathrm{6}.\mathrm{437}\:{or}\:−\mathrm{60}.\mathrm{437} \\ $$
Answered by behi83417@gmail.com last updated on 24/Dec/19
$$\mathrm{y}=\frac{\mathrm{154}}{\mathrm{x}+\mathrm{27}}\Rightarrow\mathrm{x}.\left(\frac{\mathrm{154}}{\mathrm{x}+\mathrm{27}}+\mathrm{27}\right)=\mathrm{30} \\ $$$$\Rightarrow\mathrm{x}\left(\mathrm{154}+\mathrm{27x}+\mathrm{27}^{\mathrm{2}} \right)=\mathrm{30x}+\mathrm{30}×\mathrm{27} \\ $$$$\Rightarrow\mathrm{27x}^{\mathrm{2}} +\mathrm{853x}−\mathrm{810}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{x}=\frac{−\mathrm{853}\pm\sqrt{\mathrm{853}^{\mathrm{2}} +\mathrm{4}×\mathrm{27}×\mathrm{810}}}{\mathrm{2}×\mathrm{27}} \\ $$$$\Rightarrow\begin{cases}{\mathrm{x}=\mathrm{0}.\mathrm{923}\Rightarrow\mathrm{y}=\mathrm{5}.\mathrm{52}\Rightarrow\left(\mathrm{x}+\mathrm{y}=\mathrm{6}.\mathrm{12}\right)}\\{\mathrm{x}=−\mathrm{32}.\mathrm{5}\Rightarrow\mathrm{y}=−\mathrm{27}.\mathrm{90}\Rightarrow\left(\mathrm{x}+\mathrm{y}=−\mathrm{60}.\mathrm{4}\right)}\end{cases} \\ $$
Commented by Master last updated on 24/Dec/19
$$\mathrm{thanks} \\ $$