Menu Close

Question-76627




Question Number 76627 by Maclaurin Stickker last updated on 28/Dec/19
Commented by Maclaurin Stickker last updated on 28/Dec/19
If C′ and B′ are midpints of AC and  AB, find cot(θ) as a function  of angles B and C.
$${If}\:{C}'\:{and}\:{B}'\:{are}\:{midpints}\:{of}\:{AC}\:{and} \\ $$$${AB},\:{find}\:{cot}\left(\theta\right)\:{as}\:{a}\:{function} \\ $$$${of}\:{angles}\:{B}\:{and}\:{C}. \\ $$
Commented by Maclaurin Stickker last updated on 28/Dec/19
answer: cot(θ)=(1/2)(cot(B)+cot(C))  How can I get this result?
$${answer}:\:{cot}\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left({cot}\left({B}\right)+{cot}\left({C}\right)\right) \\ $$$${How}\:{can}\:{I}\:{get}\:{this}\:{result}? \\ $$
Answered by $@ty@m123 last updated on 28/Dec/19
cot θ=((PB′)/(PM))  =(((1/2)B′C′)/(PM))  =(((1/2)(BC−B′C′))/(PM))  =(((1/2)(BM+MC−C′P−PB′))/(PM))  =(1/2){(((BM−C′P)/(PM)))+(((MC−PB′)/(PM)))}  =(1/2)(cot B+cot C)  Plese treat it as a hint not complete  solution.
$$\mathrm{cot}\:\theta=\frac{{PB}'}{{PM}} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}{B}'{C}'}{{PM}} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}\left({BC}−{B}'{C}'\right)}{{PM}} \\ $$$$=\frac{\frac{\mathrm{1}}{\mathrm{2}}\left({BM}+{MC}−{C}'{P}−{PB}'\right)}{{PM}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{\left(\frac{{BM}−{C}'{P}}{{PM}}\right)+\left(\frac{{MC}−{PB}'}{{PM}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cot}\:{B}+\mathrm{cot}\:{C}\right) \\ $$$$\boldsymbol{{Plese}}\:\boldsymbol{{treat}}\:\boldsymbol{{it}}\:\boldsymbol{{as}}\:\boldsymbol{{a}}\:\boldsymbol{{hint}}\:\boldsymbol{{not}}\:\boldsymbol{{complete}} \\ $$$$\boldsymbol{{solution}}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *