Question Number 76711 by aliesam last updated on 29/Dec/19
Answered by MJS last updated on 30/Dec/19
$${x}>\mathrm{0}\wedge{y}>\mathrm{0}\:\Rightarrow\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} >\mathrm{0}\wedge{x}^{\mathrm{2}} +{y}^{\mathrm{2}} >\mathrm{0} \\ $$$$\mathrm{0}<{x}^{\mathrm{3}} +{y}^{\mathrm{3}} \leqslant{x}−{y}\:\Rightarrow\:\mathrm{0}<{x}−{y}\:\Leftrightarrow\:{y}<{x} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} \leqslant{x}−{y} \\ $$$$\mathrm{let}\:{x}={py}\wedge{p}>\mathrm{1} \\ $$$${p}^{\mathrm{3}} {y}^{\mathrm{3}} +{y}^{\mathrm{3}} \leqslant{py}−{y} \\ $$$$\left({p}^{\mathrm{3}} +\mathrm{1}\right){y}^{\mathrm{3}} \leqslant\left({p}−\mathrm{1}\right){y} \\ $$$$\left({p}^{\mathrm{3}} +\mathrm{1}\right){y}^{\mathrm{2}} \leqslant{p}−\mathrm{1} \\ $$$${y}^{\mathrm{2}} \leqslant\frac{{p}−\mathrm{1}}{{p}^{\mathrm{3}} +\mathrm{1}} \\ $$$$\left({p}^{\mathrm{2}} +\mathrm{1}\right){y}^{\mathrm{2}} \leqslant\frac{\left({p}−\mathrm{1}\right)\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{3}} +\mathrm{1}} \\ $$$${p}^{\mathrm{2}} {y}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\frac{\left({p}−\mathrm{1}\right)\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{3}} +\mathrm{1}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant\frac{\left({p}−\mathrm{1}\right)\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{3}} +\mathrm{1}} \\ $$$${f}\left({p}\right)=\frac{\left({p}−\mathrm{1}\right)\left({p}^{\mathrm{2}} +\mathrm{1}\right)}{{p}^{\mathrm{3}} +\mathrm{1}}=\frac{{p}^{\mathrm{3}} −{p}^{\mathrm{2}} +{p}−\mathrm{1}}{{p}^{\mathrm{3}} +\mathrm{1}} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{0} \\ $$$${f}'\left({p}\right)=\frac{{p}^{\mathrm{4}} −\mathrm{2}{p}^{\mathrm{3}} +\mathrm{6}{p}^{\mathrm{2}} −\mathrm{2}{p}+\mathrm{1}}{\left({p}^{\mathrm{3}} +\mathrm{1}\right)^{\mathrm{2}} }>\mathrm{0}\forall{p}\in\mathbb{R}\:\Rightarrow \\ $$$$\Rightarrow\:{p}_{\mathrm{2}} >{p}_{\mathrm{1}} \Leftrightarrow{f}\left({p}_{\mathrm{2}} \right)>{f}\left({p}_{\mathrm{1}} \right) \\ $$$$\underset{{p}\rightarrow\infty} {\mathrm{lim}}{f}\left({p}\right)=\mathrm{1} \\ $$$$\Rightarrow\:\mathrm{0}<{f}\left({p}\right)<\mathrm{1}\forall{p}>\mathrm{1} \\ $$$$\Rightarrow \\ $$$$\mathrm{0}<{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \leqslant{f}\left({p}\right)<\mathrm{1} \\ $$