Menu Close

Question-76830




Question Number 76830 by peter frank last updated on 30/Dec/19
Commented by mathmax by abdo last updated on 05/Jan/20
let remember that arctanz =(1/(2i))ln(((1+iz)/(1−iz))) (result proved)  iln(((a−ib)/(a+ib))) =−iln(((a+ib)/(a−ib))) =−iln(((1+i(b/a))/(1−i(b/a)))) =−i(2i)arctan((b/a))  =2 arctan((b/a)) ⇒tan(iln(((a−ib)/(a+ib))))=tan(2arctan((b/a)))  =((2(b/a))/(1−(b^2 /a^2 ))) =(((2b)/a)/((a^2 −b^2 )/a^2 )) =((2b)/a)×(a^2 /(a^2 −b^2 )) =((2ab)/(a^2 −b^2 )) .
$${let}\:{remember}\:{that}\:{arctanz}\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right)\:\left({result}\:{proved}\right) \\ $$$${iln}\left(\frac{{a}−{ib}}{{a}+{ib}}\right)\:=−{iln}\left(\frac{{a}+{ib}}{{a}−{ib}}\right)\:=−{iln}\left(\frac{\mathrm{1}+{i}\frac{{b}}{{a}}}{\mathrm{1}−{i}\frac{{b}}{{a}}}\right)\:=−{i}\left(\mathrm{2}{i}\right){arctan}\left(\frac{{b}}{{a}}\right) \\ $$$$=\mathrm{2}\:{arctan}\left(\frac{{b}}{{a}}\right)\:\Rightarrow{tan}\left({iln}\left(\frac{{a}−{ib}}{{a}+{ib}}\right)\right)={tan}\left(\mathrm{2}{arctan}\left(\frac{{b}}{{a}}\right)\right) \\ $$$$=\frac{\mathrm{2}\frac{{b}}{{a}}}{\mathrm{1}−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}\:=\frac{\frac{\mathrm{2}{b}}{{a}}}{\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} }}\:=\frac{\mathrm{2}{b}}{{a}}×\frac{{a}^{\mathrm{2}} }{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:=\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }\:. \\ $$
Commented by peter frank last updated on 05/Jan/20
thank you
$${thank}\:{you} \\ $$
Answered by MJS last updated on 31/Dec/19
ln (p+qi) =(1/2)ln (p^2 +q^2 ) +i arctan (q/p)  i ln (p+qi) =−arctan (q/p) +i((ln (p^2 +q^2 ))/2)=       [((a−bi)/(a+bi))=((a^2 −b^2 )/(a^2 +b^2 ))−((2ab)/(a^2 +b^2 ))i ⇒ p=((a^2 −b^2 )/(a^2 +b^2 )); q=−((2ab)/(a^2 +b^2 )) ⇒ p^2 +q^2 =1]  =arctan ((2ab)/(a^2 −b^2 ))  ⇒ tan (i ln ((a−bi)/(a+bi))) =((2ab)/(a^2 −b^2 ))
$$\mathrm{ln}\:\left({p}+{q}\mathrm{i}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)\:+\mathrm{i}\:\mathrm{arctan}\:\frac{{q}}{{p}} \\ $$$$\mathrm{i}\:\mathrm{ln}\:\left({p}+{q}\mathrm{i}\right)\:=−\mathrm{arctan}\:\frac{{q}}{{p}}\:+\mathrm{i}\frac{\mathrm{ln}\:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)}{\mathrm{2}}= \\ $$$$\:\:\:\:\:\left[\frac{{a}−{b}\mathrm{i}}{{a}+{b}\mathrm{i}}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }−\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\mathrm{i}\:\Rightarrow\:{p}=\frac{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} };\:{q}=−\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\:\Rightarrow\:{p}^{\mathrm{2}} +{q}^{\mathrm{2}} =\mathrm{1}\right] \\ $$$$=\mathrm{arctan}\:\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{tan}\:\left(\mathrm{i}\:\mathrm{ln}\:\frac{{a}−{b}\mathrm{i}}{{a}+{b}\mathrm{i}}\right)\:=\frac{\mathrm{2}{ab}}{{a}^{\mathrm{2}} −{b}^{\mathrm{2}} } \\ $$
Commented by peter frank last updated on 31/Dec/19
explain the first line
$${explain}\:{the}\:{first}\:{line}\: \\ $$
Commented by mr W last updated on 31/Dec/19
p+qi=(√(p^2 +q^2 ))((p/( (√(p^2 +q^2 ))))+(q/( (√(p^2 +q^2 ))))i)  p+qi=(√(p^2 +q^2 ))(cos α+i sin α) with α=tan^(−1) (q/p)  p+qi=(√(p^2 +q^2 )) e^(iα)   ⇒ln (p+qi)=ln ((√(p^2 +q^2 )) e^(iα) )  =(1/2)ln (p^2 +q^2 )+iα  =(1/2)ln (p^2 +q^2 )+i tan^(−1) (q/p)
$${p}+{qi}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\left(\frac{{p}}{\:\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }}+\frac{{q}}{\:\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }}{i}\right) \\ $$$${p}+{qi}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\left(\mathrm{cos}\:\alpha+{i}\:\mathrm{sin}\:\alpha\right)\:{with}\:\alpha=\mathrm{tan}^{−\mathrm{1}} \frac{{q}}{{p}} \\ $$$${p}+{qi}=\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\:{e}^{{i}\alpha} \\ $$$$\Rightarrow\mathrm{ln}\:\left({p}+{qi}\right)=\mathrm{ln}\:\left(\sqrt{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }\:{e}^{{i}\alpha} \right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)+{i}\alpha \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} \right)+{i}\:\mathrm{tan}^{−\mathrm{1}} \frac{{q}}{{p}} \\ $$
Commented by peter frank last updated on 31/Dec/19
thank you sir for ellaboration
$${thank}\:{you}\:{sir}\:{for}\:{ellaboration} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *