Menu Close

Question-76898




Question Number 76898 by Maclaurin Stickker last updated on 31/Dec/19
Answered by mr W last updated on 31/Dec/19
Commented by mr W last updated on 31/Dec/19
a=2  α=140°  β=40°  AB=BC=CA=a(1+2 cos β)  ∠BAC=60°  BD=(a/(2 cos β))  AD=AB−BD=a(1+2 cos β−(1/(2 cos β)))  AE=2a cos β  ED^2 =AD^2 +AE^2 −2×AD×AE×cos 60°  ED^2 =a^2 (1+2 cos β−(1/(2 cos β)))^2 +4a^2  cos^2  β−2a^2 (1+2 cos β−(1/(2 cos β))) cos β  ED^2 =a^2 (4 cos^2  β+(1/(4 cos^2  β))+2 cos β−(1/(cos β))+1)  ED^2 =a^2 (3+2 cos 2β+(1/(4 cos^2  β))+((cos 2β)/(cos β)))  ED^2 =a^2 (3+2 cos 80°+(1/(4 cos^2  40°))+((cos 80°)/(cos 40°)))  =4a^2   area of square =(((DE)/( (√2))))^2 =((DE^2 )/2)  =((4a^2 )/2)=2a^2 =2×2^2 =8    side length of square =(√2)a
$${a}=\mathrm{2} \\ $$$$\alpha=\mathrm{140}° \\ $$$$\beta=\mathrm{40}° \\ $$$${AB}={BC}={CA}={a}\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\beta\right) \\ $$$$\angle{BAC}=\mathrm{60}° \\ $$$${BD}=\frac{{a}}{\mathrm{2}\:\mathrm{cos}\:\beta} \\ $$$${AD}={AB}−{BD}={a}\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\beta−\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\beta}\right) \\ $$$${AE}=\mathrm{2}{a}\:\mathrm{cos}\:\beta \\ $$$${ED}^{\mathrm{2}} ={AD}^{\mathrm{2}} +{AE}^{\mathrm{2}} −\mathrm{2}×{AD}×{AE}×\mathrm{cos}\:\mathrm{60}° \\ $$$${ED}^{\mathrm{2}} ={a}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\beta−\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\beta}\right)^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\beta−\mathrm{2}{a}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\beta−\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\beta}\right)\:\mathrm{cos}\:\beta \\ $$$${ED}^{\mathrm{2}} ={a}^{\mathrm{2}} \left(\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\beta+\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\beta}+\mathrm{2}\:\mathrm{cos}\:\beta−\frac{\mathrm{1}}{\mathrm{cos}\:\beta}+\mathrm{1}\right) \\ $$$${ED}^{\mathrm{2}} ={a}^{\mathrm{2}} \left(\mathrm{3}+\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\beta+\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\beta}+\frac{\mathrm{cos}\:\mathrm{2}\beta}{\mathrm{cos}\:\beta}\right) \\ $$$${ED}^{\mathrm{2}} ={a}^{\mathrm{2}} \left(\mathrm{3}+\mathrm{2}\:\mathrm{cos}\:\mathrm{80}°+\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{40}°}+\frac{\mathrm{cos}\:\mathrm{80}°}{\mathrm{cos}\:\mathrm{40}°}\right) \\ $$$$=\mathrm{4}{a}^{\mathrm{2}} \\ $$$${area}\:{of}\:{square}\:=\left(\frac{{DE}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} =\frac{{DE}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{4}{a}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2}{a}^{\mathrm{2}} =\mathrm{2}×\mathrm{2}^{\mathrm{2}} =\mathrm{8} \\ $$$$ \\ $$$${side}\:{length}\:{of}\:{square}\:=\sqrt{\mathrm{2}}{a} \\ $$
Commented by Maclaurin Stickker last updated on 31/Dec/19
Thanks. And Happy new year!
$${Thanks}.\:{And}\:{Happy}\:{new}\:{year}! \\ $$
Commented by mr W last updated on 31/Dec/19
thanks! the same to you!
$${thanks}!\:{the}\:{same}\:{to}\:{you}! \\ $$
Commented by Maclaurin Stickker last updated on 06/Jan/20
Sir, I founf 6 for the area.
$${Sir},\:{I}\:{founf}\:\mathrm{6}\:{for}\:{the}\:{area}. \\ $$
Commented by mr W last updated on 07/Jan/20
6 is correct sir!  i made an error somewhere.
$$\mathrm{6}\:{is}\:{correct}\:{sir}! \\ $$$${i}\:{made}\:{an}\:{error}\:{somewhere}. \\ $$
Commented by Tawa11 last updated on 29/Dec/21
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *