Question Number 76898 by Maclaurin Stickker last updated on 31/Dec/19
Answered by mr W last updated on 31/Dec/19
Commented by mr W last updated on 31/Dec/19
$${a}=\mathrm{2} \\ $$$$\alpha=\mathrm{140}° \\ $$$$\beta=\mathrm{40}° \\ $$$${AB}={BC}={CA}={a}\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\beta\right) \\ $$$$\angle{BAC}=\mathrm{60}° \\ $$$${BD}=\frac{{a}}{\mathrm{2}\:\mathrm{cos}\:\beta} \\ $$$${AD}={AB}−{BD}={a}\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\beta−\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\beta}\right) \\ $$$${AE}=\mathrm{2}{a}\:\mathrm{cos}\:\beta \\ $$$${ED}^{\mathrm{2}} ={AD}^{\mathrm{2}} +{AE}^{\mathrm{2}} −\mathrm{2}×{AD}×{AE}×\mathrm{cos}\:\mathrm{60}° \\ $$$${ED}^{\mathrm{2}} ={a}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\beta−\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\beta}\right)^{\mathrm{2}} +\mathrm{4}{a}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\beta−\mathrm{2}{a}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\beta−\frac{\mathrm{1}}{\mathrm{2}\:\mathrm{cos}\:\beta}\right)\:\mathrm{cos}\:\beta \\ $$$${ED}^{\mathrm{2}} ={a}^{\mathrm{2}} \left(\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\beta+\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\beta}+\mathrm{2}\:\mathrm{cos}\:\beta−\frac{\mathrm{1}}{\mathrm{cos}\:\beta}+\mathrm{1}\right) \\ $$$${ED}^{\mathrm{2}} ={a}^{\mathrm{2}} \left(\mathrm{3}+\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\beta+\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\beta}+\frac{\mathrm{cos}\:\mathrm{2}\beta}{\mathrm{cos}\:\beta}\right) \\ $$$${ED}^{\mathrm{2}} ={a}^{\mathrm{2}} \left(\mathrm{3}+\mathrm{2}\:\mathrm{cos}\:\mathrm{80}°+\frac{\mathrm{1}}{\mathrm{4}\:\mathrm{cos}^{\mathrm{2}} \:\mathrm{40}°}+\frac{\mathrm{cos}\:\mathrm{80}°}{\mathrm{cos}\:\mathrm{40}°}\right) \\ $$$$=\mathrm{4}{a}^{\mathrm{2}} \\ $$$${area}\:{of}\:{square}\:=\left(\frac{{DE}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} =\frac{{DE}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$=\frac{\mathrm{4}{a}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{2}{a}^{\mathrm{2}} =\mathrm{2}×\mathrm{2}^{\mathrm{2}} =\mathrm{8} \\ $$$$ \\ $$$${side}\:{length}\:{of}\:{square}\:=\sqrt{\mathrm{2}}{a} \\ $$
Commented by Maclaurin Stickker last updated on 31/Dec/19
$${Thanks}.\:{And}\:{Happy}\:{new}\:{year}! \\ $$
Commented by mr W last updated on 31/Dec/19
$${thanks}!\:{the}\:{same}\:{to}\:{you}! \\ $$
Commented by Maclaurin Stickker last updated on 06/Jan/20
$${Sir},\:{I}\:{founf}\:\mathrm{6}\:{for}\:{the}\:{area}. \\ $$
Commented by mr W last updated on 07/Jan/20
$$\mathrm{6}\:{is}\:{correct}\:{sir}! \\ $$$${i}\:{made}\:{an}\:{error}\:{somewhere}. \\ $$
Commented by Tawa11 last updated on 29/Dec/21
$$\mathrm{Great}\:\mathrm{sir} \\ $$