Menu Close

Question-77009




Question Number 77009 by Master last updated on 02/Jan/20
Commented by Master last updated on 02/Jan/20
lose x from the system(find the connection between a and c)
$$\mathrm{lose}\:\mathrm{x}\:\mathrm{from}\:\mathrm{the}\:\mathrm{system}\left(\mathrm{find}\:\mathrm{the}\:\mathrm{connection}\:\mathrm{between}\:\mathrm{a}\:\mathrm{and}\:\mathrm{c}\right) \\ $$
Commented by MJS last updated on 02/Jan/20
solve both for c  c=term_1  (a, x)  c=term_2  (a, x)  ⇒  term_1  (a, x) =term_2  (a, x)  this leads to a polynome in x^4 &a^4   let x^4 =y∧a^4 =b  we get 4 exact solutions for y but they are  not “nice” and hard to handle  ⇒  we can insert into c=term_1  or c=term_2  and  get 4 values for c(a) but again they are not  “nice”.  I′m not willing to type all this, do it for  yourself, the path is easy but you′ll waste  plenty of paper and nerves...
$$\mathrm{solve}\:\mathrm{both}\:\mathrm{for}\:{c} \\ $$$${c}=\mathrm{term}_{\mathrm{1}} \:\left({a},\:{x}\right) \\ $$$${c}=\mathrm{term}_{\mathrm{2}} \:\left({a},\:{x}\right) \\ $$$$\Rightarrow \\ $$$$\mathrm{term}_{\mathrm{1}} \:\left({a},\:{x}\right)\:=\mathrm{term}_{\mathrm{2}} \:\left({a},\:{x}\right) \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{polynome}\:\mathrm{in}\:{x}^{\mathrm{4}} \&{a}^{\mathrm{4}} \\ $$$$\mathrm{let}\:{x}^{\mathrm{4}} ={y}\wedge{a}^{\mathrm{4}} ={b} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{4}\:\mathrm{exact}\:\mathrm{solutions}\:\mathrm{for}\:{y}\:\mathrm{but}\:\mathrm{they}\:\mathrm{are} \\ $$$$\mathrm{not}\:“\mathrm{nice}''\:\mathrm{and}\:\mathrm{hard}\:\mathrm{to}\:\mathrm{handle} \\ $$$$\Rightarrow \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{insert}\:\mathrm{into}\:{c}=\mathrm{term}_{\mathrm{1}} \:\mathrm{or}\:{c}=\mathrm{term}_{\mathrm{2}} \:\mathrm{and} \\ $$$$\mathrm{get}\:\mathrm{4}\:\mathrm{values}\:\mathrm{for}\:{c}\left({a}\right)\:\mathrm{but}\:\mathrm{again}\:\mathrm{they}\:\mathrm{are}\:\mathrm{not} \\ $$$$“\mathrm{nice}''. \\ $$$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{willing}\:\mathrm{to}\:\mathrm{type}\:\mathrm{all}\:\mathrm{this},\:\mathrm{do}\:\mathrm{it}\:\mathrm{for} \\ $$$$\mathrm{yourself},\:\mathrm{the}\:\mathrm{path}\:\mathrm{is}\:\mathrm{easy}\:\mathrm{but}\:\mathrm{you}'\mathrm{ll}\:\mathrm{waste} \\ $$$$\mathrm{plenty}\:\mathrm{of}\:\mathrm{paper}\:\mathrm{and}\:\mathrm{nerves}… \\ $$
Commented by Master last updated on 02/Jan/20
prove that
$$\mathrm{prove}\:\mathrm{that} \\ $$
Commented by MJS last updated on 02/Jan/20
prove that for yourself
$$\mathrm{prove}\:\mathrm{that}\:\mathrm{for}\:\mathrm{yourself} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *