Question Number 77160 by Chi Mes Try last updated on 03/Jan/20
Commented by Chi Mes Try last updated on 03/Jan/20
$${please}\:{help}\:{out} \\ $$
Answered by mind is power last updated on 05/Jan/20
$$\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{xsin}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}=\int_{\mathrm{0}} ^{\pi} \frac{\left(\pi−\mathrm{x}\right)\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx} \\ $$$$\Rightarrow\mathrm{2}\int\frac{\mathrm{xsin}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx}=\pi\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx}=\left[−\pi\mathrm{arctan}\left(\mathrm{cos}\left(\mathrm{x}\right)\right)\right]_{\mathrm{0}} ^{\pi} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{2}}\Rightarrow\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{xsin}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{4}} \\ $$$$\left(\mathrm{k}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\right)^{\mathrm{2}} =\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\sqrt{\mathrm{2}}\mathrm{dx}}{\:\sqrt{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}}\right)^{\mathrm{2}} =\mathrm{2}\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}}\right)^{\mathrm{2}} \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right).\Gamma\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}\right)=\frac{\pi}{\mathrm{sin}\left(\frac{\pi}{\mathrm{4}}\right)}=\pi\sqrt{\mathrm{2}} \\ $$$$\frac{\Gamma\left(\mathrm{x}\right).\Gamma\left(\mathrm{y}\right)}{\Gamma\left(\mathrm{x}+\mathrm{y}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{t}^{\mathrm{x}−\mathrm{1}} \left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{y}−\mathrm{1}} \mathrm{dt} \\ $$$$\mathrm{2x}=\mathrm{y}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow \\ $$$$\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right).\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}=\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{t}^{\frac{−\mathrm{3}}{\mathrm{4}}} .\left(\mathrm{1}−\mathrm{t}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{dt} \\ $$$$\mathrm{t}=\mathrm{u}^{\mathrm{4}} \Rightarrow\mathrm{du}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{t}^{−\frac{\mathrm{3}}{\mathrm{4}}} \mathrm{dt} \\ $$$$\Rightarrow\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right).\sqrt{\pi}}{\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)}=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−\mathrm{u}^{\mathrm{4}} \right)^{−\frac{\mathrm{1}}{\mathrm{4}}} \mathrm{du} \\ $$$$\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right).\Gamma\left(\frac{\mathrm{3}}{\mathrm{4}}\right)=\pi\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\:\sqrt{\mathrm{2}\pi}}=\mathrm{4}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }} \\ $$$$\mathrm{k}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} =\mathrm{2}\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{2}−\mathrm{sin}^{\mathrm{2}} \left(\mathrm{x}\right)}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{2}\left(\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{2}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}\right)^{\mathrm{2}} =\mathrm{k}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)^{\mathrm{2}} \Rightarrow\frac{\Gamma^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}\sqrt{\mathrm{2}\pi}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }} \\ $$$$\Rightarrow\mathrm{2}\left(\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{\mathrm{dx}}{\:\sqrt{\mathrm{1}−\mathrm{x}^{\mathrm{4}} }}\right)\right)^{\mathrm{2}} =\mathrm{k}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)=\frac{\Gamma^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{16}\pi}=\frac{\Gamma^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}\pi} \\ $$$$\frac{\mathrm{k}^{\mathrm{2}} \left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)}{\int_{\mathrm{0}} ^{\pi} \frac{\mathrm{xsin}\left(\mathrm{x}\right)}{\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \left(\mathrm{x}\right)}\mathrm{dx}}=\frac{\Gamma^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\frac{\mathrm{16}\pi}{\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}}=\frac{\Gamma^{\mathrm{4}} \left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\mathrm{4}\pi^{\mathrm{3}} } \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$