Menu Close

Question-77229




Question Number 77229 by Maclaurin Stickker last updated on 04/Jan/20
Commented by Maclaurin Stickker last updated on 04/Jan/20
ABC is a triangle. Radius circumferences  shown in the figure are drawn  internally to the triangle tanging  two of its sides and the incircle.  Determine the radius of the incircle.
$${ABC}\:{is}\:{a}\:{triangle}.\:{Radius}\:{circumferences} \\ $$$${shown}\:{in}\:{the}\:{figure}\:{are}\:{drawn} \\ $$$${internally}\:{to}\:{the}\:{triangle}\:{tanging} \\ $$$${two}\:{of}\:{its}\:{sides}\:{and}\:{the}\:{incircle}. \\ $$$${Determine}\:{the}\:{radius}\:{of}\:{the}\:{incircle}. \\ $$$$ \\ $$
Answered by mr W last updated on 04/Jan/20
Commented by mr W last updated on 05/Jan/20
a=y+z  b=z+x  c=x+y  ⇒x+y+z=((a+b+c)/2)=(p/2)=s  ⇒x=s−a, y=s−b, z=s−c  ((r−r_b )/( (√((r+r_b )^2 −(r−r_b )^2 ))))=(r/y)  ((r−r_b )/(2(√(rr_b ))))=(r/y)  ⇒y=((2r(√(rr_b )))/(r−r_b ))  ⇒s−b=((2r(√(rr_b )))/(r−r_b ))  similarly  ⇒s−a=((2r(√(rr_a )))/(r−r_a ))  ⇒s−c=((2r(√(rr_c )))/(r−r_c ))  ⇒3s−(a+b+c)=2r(((√(rr_a ))/(r−r_a ))+((√(rr_b ))/(r−r_b ))+((√(rr_c ))/(r−r_c )))  ⇒s=2r(((√(rr_a ))/(r−r_a ))+((√(rr_b ))/(r−r_b ))+((√(rr_c ))/(r−r_c )))    Δ=(√(s(s−a)(s−b)(s−c)))  ⇒Δ=(√(2r(((√(rr_a ))/(r−r_a ))+((√(rr_b ))/(r−r_b ))+((√(rr_c ))/(r−r_c )))(((2r(√(rr_a )))/(r−r_a )))(((2r(√(rr_b )))/(r−r_b )))(((2r(√(rr_c )))/(r−r_c )))))  ⇒Δ=4r^2 (√((((√(rr_a ))/(r−r_a ))+((√(rr_b ))/(r−r_b ))+((√(rr_c ))/(r−r_c )))(((√(rr_a ))/(r−r_a )))(((√(rr_b ))/(r−r_b )))(((√(rr_c ))/(r−r_c )))))  Δ=sr=2r^2 (((√(rr_a ))/(r−r_a ))+((√(rr_b ))/(r−r_b ))+((√(rr_c ))/(r−r_c )))  ⇒2r^2 (((√(rr_a ))/(r−r_a ))+((√(rr_b ))/(r−r_b ))+((√(rr_c ))/(r−r_c )))=4r^2 (√((((√(rr_a ))/(r−r_a ))+((√(rr_b ))/(r−r_b ))+((√(rr_c ))/(r−r_c )))(((√(rr_a ))/(r−r_a )))(((√(rr_b ))/(r−r_b )))(((√(rr_c ))/(r−r_c )))))  ⇒(√(((√(rr_a ))/(r−r_a ))+((√(rr_b ))/(r−r_b ))+((√(rr_c ))/(r−r_c ))))=2(√((((√(rr_a ))/(r−r_a )))(((√(rr_b ))/(r−r_b )))(((√(rr_c ))/(r−r_c )))))  ⇒(√(((√r)/(r−1))+((2(√r))/(r−4))+((3(√r))/(r−9))))=2(√((((√r)/(r−1)))(((2(√r))/(r−4)))(((3(√r))/(r−9)))))  let λ=(√r)  ⇒(√((1/(λ^2 −1))+(2/(λ^2 −4))+(3/(λ^2 −9))))=2λ(√(6/((λ^2 −1)(λ^2 −4)(λ^2 −9))))  ⇒(√(((λ^4 −13λ^2 +36)/((λ^2 −1)(λ^2 −4)(λ^2 −9)))+((2(λ^4 −10λ^2 +9))/((λ^2 −1)(λ^2 −4)(λ^2 −9)))+((3(λ^4 −5λ^2 +4))/((λ^2 −1)(λ^2 −4)(λ^2 −9)))))=2λ(√(6/((λ^2 −1)(λ^2 −4)(λ^2 −9))))  (√(6λ^4 −48λ^2 +66))=2λ(√6)  6λ^4 −48λ^2 +66=24λ^2   λ^4 −12λ^2 +11=0  (λ^2 −1)(λ^2 −11)=0  ⇒λ^2 =1 ⇒r=1 ! not good!  ⇒λ^2 =11 ⇒r=11  i.e. the radius of incircle is 11.
$${a}={y}+{z} \\ $$$${b}={z}+{x} \\ $$$${c}={x}+{y} \\ $$$$\Rightarrow{x}+{y}+{z}=\frac{{a}+{b}+{c}}{\mathrm{2}}=\frac{{p}}{\mathrm{2}}={s} \\ $$$$\Rightarrow{x}={s}−{a},\:{y}={s}−{b},\:{z}={s}−{c} \\ $$$$\frac{{r}−{r}_{{b}} }{\:\sqrt{\left({r}+{r}_{{b}} \right)^{\mathrm{2}} −\left({r}−{r}_{{b}} \right)^{\mathrm{2}} }}=\frac{{r}}{{y}} \\ $$$$\frac{{r}−{r}_{{b}} }{\mathrm{2}\sqrt{{rr}_{{b}} }}=\frac{{r}}{{y}} \\ $$$$\Rightarrow{y}=\frac{\mathrm{2}{r}\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} } \\ $$$$\Rightarrow{s}−{b}=\frac{\mathrm{2}{r}\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} } \\ $$$${similarly} \\ $$$$\Rightarrow{s}−{a}=\frac{\mathrm{2}{r}\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} } \\ $$$$\Rightarrow{s}−{c}=\frac{\mathrm{2}{r}\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} } \\ $$$$\Rightarrow\mathrm{3}{s}−\left({a}+{b}+{c}\right)=\mathrm{2}{r}\left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }+\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }+\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right) \\ $$$$\Rightarrow{s}=\mathrm{2}{r}\left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }+\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }+\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right) \\ $$$$ \\ $$$$\Delta=\sqrt{{s}\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)} \\ $$$$\Rightarrow\Delta=\sqrt{\mathrm{2}{r}\left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }+\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }+\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right)\left(\frac{\mathrm{2}{r}\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }\right)\left(\frac{\mathrm{2}{r}\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }\right)\left(\frac{\mathrm{2}{r}\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right)} \\ $$$$\Rightarrow\Delta=\mathrm{4}{r}^{\mathrm{2}} \sqrt{\left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }+\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }+\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right)\left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }\right)\left(\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }\right)\left(\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right)} \\ $$$$\Delta={sr}=\mathrm{2}{r}^{\mathrm{2}} \left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }+\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }+\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right) \\ $$$$\Rightarrow\mathrm{2}{r}^{\mathrm{2}} \left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }+\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }+\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right)=\mathrm{4}{r}^{\mathrm{2}} \sqrt{\left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }+\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }+\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right)\left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }\right)\left(\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }\right)\left(\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right)} \\ $$$$\Rightarrow\sqrt{\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }+\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }+\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }}=\mathrm{2}\sqrt{\left(\frac{\sqrt{{rr}_{{a}} }}{{r}−{r}_{{a}} }\right)\left(\frac{\sqrt{{rr}_{{b}} }}{{r}−{r}_{{b}} }\right)\left(\frac{\sqrt{{rr}_{{c}} }}{{r}−{r}_{{c}} }\right)} \\ $$$$\Rightarrow\sqrt{\frac{\sqrt{{r}}}{{r}−\mathrm{1}}+\frac{\mathrm{2}\sqrt{{r}}}{{r}−\mathrm{4}}+\frac{\mathrm{3}\sqrt{{r}}}{{r}−\mathrm{9}}}=\mathrm{2}\sqrt{\left(\frac{\sqrt{{r}}}{{r}−\mathrm{1}}\right)\left(\frac{\mathrm{2}\sqrt{{r}}}{{r}−\mathrm{4}}\right)\left(\frac{\mathrm{3}\sqrt{{r}}}{{r}−\mathrm{9}}\right)} \\ $$$${let}\:\lambda=\sqrt{{r}} \\ $$$$\Rightarrow\sqrt{\frac{\mathrm{1}}{\lambda^{\mathrm{2}} −\mathrm{1}}+\frac{\mathrm{2}}{\lambda^{\mathrm{2}} −\mathrm{4}}+\frac{\mathrm{3}}{\lambda^{\mathrm{2}} −\mathrm{9}}}=\mathrm{2}\lambda\sqrt{\frac{\mathrm{6}}{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} −\mathrm{4}\right)\left(\lambda^{\mathrm{2}} −\mathrm{9}\right)}} \\ $$$$\Rightarrow\sqrt{\frac{\lambda^{\mathrm{4}} −\mathrm{13}\lambda^{\mathrm{2}} +\mathrm{36}}{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} −\mathrm{4}\right)\left(\lambda^{\mathrm{2}} −\mathrm{9}\right)}+\frac{\mathrm{2}\left(\lambda^{\mathrm{4}} −\mathrm{10}\lambda^{\mathrm{2}} +\mathrm{9}\right)}{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} −\mathrm{4}\right)\left(\lambda^{\mathrm{2}} −\mathrm{9}\right)}+\frac{\mathrm{3}\left(\lambda^{\mathrm{4}} −\mathrm{5}\lambda^{\mathrm{2}} +\mathrm{4}\right)}{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} −\mathrm{4}\right)\left(\lambda^{\mathrm{2}} −\mathrm{9}\right)}}=\mathrm{2}\lambda\sqrt{\frac{\mathrm{6}}{\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} −\mathrm{4}\right)\left(\lambda^{\mathrm{2}} −\mathrm{9}\right)}} \\ $$$$\sqrt{\mathrm{6}\lambda^{\mathrm{4}} −\mathrm{48}\lambda^{\mathrm{2}} +\mathrm{66}}=\mathrm{2}\lambda\sqrt{\mathrm{6}} \\ $$$$\mathrm{6}\lambda^{\mathrm{4}} −\mathrm{48}\lambda^{\mathrm{2}} +\mathrm{66}=\mathrm{24}\lambda^{\mathrm{2}} \\ $$$$\lambda^{\mathrm{4}} −\mathrm{12}\lambda^{\mathrm{2}} +\mathrm{11}=\mathrm{0} \\ $$$$\left(\lambda^{\mathrm{2}} −\mathrm{1}\right)\left(\lambda^{\mathrm{2}} −\mathrm{11}\right)=\mathrm{0} \\ $$$$\Rightarrow\lambda^{\mathrm{2}} =\mathrm{1}\:\Rightarrow{r}=\mathrm{1}\:!\:{not}\:{good}! \\ $$$$\Rightarrow\lambda^{\mathrm{2}} =\mathrm{11}\:\Rightarrow{r}=\mathrm{11} \\ $$$${i}.{e}.\:{the}\:{radius}\:{of}\:{incircle}\:{is}\:\mathrm{11}. \\ $$
Commented by Maclaurin Stickker last updated on 04/Jan/20
wow! perfect∙
$${wow}!\:{perfect}\centerdot \\ $$
Commented by mr W last updated on 04/Jan/20
it can be simplified to  r=(√(r_a r_b ))+(√(r_b r_c ))+(√(r_c r_a ))  =(√(1×4))+(√(4×9))+(√(9×1))  =2+6+3  =11
$${it}\:{can}\:{be}\:{simplified}\:{to} \\ $$$${r}=\sqrt{{r}_{{a}} {r}_{{b}} }+\sqrt{{r}_{{b}} {r}_{{c}} }+\sqrt{{r}_{{c}} {r}_{{a}} } \\ $$$$=\sqrt{\mathrm{1}×\mathrm{4}}+\sqrt{\mathrm{4}×\mathrm{9}}+\sqrt{\mathrm{9}×\mathrm{1}} \\ $$$$=\mathrm{2}+\mathrm{6}+\mathrm{3} \\ $$$$=\mathrm{11} \\ $$
Commented by otchereabdullai@gmail.com last updated on 04/Jan/20
you are fantastic prof  w
$$\mathrm{you}\:\mathrm{are}\:\mathrm{fantastic}\:\mathrm{prof}\:\:\mathrm{w} \\ $$
Commented by otchereabdullai@gmail.com last updated on 04/Jan/20
you are fantastic prof  w
$$\mathrm{you}\:\mathrm{are}\:\mathrm{fantastic}\:\mathrm{prof}\:\:\mathrm{w} \\ $$
Commented by otchereabdullai@gmail.com last updated on 04/Jan/20
you are fantastic prof  w
$$\mathrm{you}\:\mathrm{are}\:\mathrm{fantastic}\:\mathrm{prof}\:\:\mathrm{w} \\ $$
Commented by otchereabdullai@gmail.com last updated on 04/Jan/20
you are fantastic prof  w
$$\mathrm{you}\:\mathrm{are}\:\mathrm{fantastic}\:\mathrm{prof}\:\:\mathrm{w} \\ $$
Commented by jagoll last updated on 05/Jan/20
waw  amazing sir
$$\mathrm{waw}\:\:\mathrm{amazing}\:\mathrm{sir}\: \\ $$
Commented by peter frank last updated on 05/Jan/20
your genius
$${your}\:{genius} \\ $$
Commented by mr W last updated on 06/Jan/20
see Q77425 for an other way to  prove.
$${see}\:{Q}\mathrm{77425}\:{for}\:{an}\:{other}\:{way}\:{to} \\ $$$${prove}. \\ $$
Commented by Tawa11 last updated on 29/Dec/21
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *