Menu Close

Question-77390




Question Number 77390 by Maclaurin Stickker last updated on 05/Jan/20
Commented by Maclaurin Stickker last updated on 05/Jan/20
find the radius of the shaded   circumference as a function of  side a of the square.
$${find}\:{the}\:{radius}\:{of}\:{the}\:{shaded}\: \\ $$$${circumference}\:{as}\:{a}\:{function}\:{of} \\ $$$${side}\:{a}\:{of}\:{the}\:{square}. \\ $$
Answered by jagoll last updated on 06/Jan/20
r(1+(√2)) = a((√2)−1)  r = a(3−2(√2))
$$\mathrm{r}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\:=\:\mathrm{a}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right) \\ $$$$\mathrm{r}\:=\:\mathrm{a}\left(\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}}\right) \\ $$
Commented by mr W last updated on 06/Jan/20
it′s not correct sir!  the center of the small circle doesn′t  lie on the diagonal of the square!
$${it}'{s}\:{not}\:{correct}\:{sir}! \\ $$$${the}\:{center}\:{of}\:{the}\:{small}\:{circle}\:{doesn}'{t} \\ $$$${lie}\:{on}\:{the}\:{diagonal}\:{of}\:{the}\:{square}! \\ $$
Commented by jagoll last updated on 06/Jan/20
  o yes sir i agree
$$\:\:{o}\:{yes}\:{sir}\:{i}\:{agree} \\ $$
Answered by mr W last updated on 06/Jan/20
Commented by mr W last updated on 06/Jan/20
AC=a−r  BC=a+r  sin β=((DC)/(AC))=(r/(a−r))=cos α  BC^2 =AC^2 +AB^2 −2×AC×AB×cos α  (a+r)^2 =(a−r)^2 +a^2 −2(a−r)a×(r/(a−r))  a^2 +r^2 +2ar=a^2 −2ar+r^2 +a^2 −2ar  0=a^2 −6ar  ⇒r=(a/6)
$${AC}={a}−{r} \\ $$$${BC}={a}+{r} \\ $$$$\mathrm{sin}\:\beta=\frac{{DC}}{{AC}}=\frac{{r}}{{a}−{r}}=\mathrm{cos}\:\alpha \\ $$$${BC}^{\mathrm{2}} ={AC}^{\mathrm{2}} +{AB}^{\mathrm{2}} −\mathrm{2}×{AC}×{AB}×\mathrm{cos}\:\alpha \\ $$$$\left({a}+{r}\right)^{\mathrm{2}} =\left({a}−{r}\right)^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}\left({a}−{r}\right){a}×\frac{{r}}{{a}−{r}} \\ $$$${a}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}{ar}={a}^{\mathrm{2}} −\mathrm{2}{ar}+{r}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{ar} \\ $$$$\mathrm{0}={a}^{\mathrm{2}} −\mathrm{6}{ar} \\ $$$$\Rightarrow{r}=\frac{{a}}{\mathrm{6}} \\ $$
Commented by mr W last updated on 06/Jan/20
or:  AD^2 =AC^2 −DC^2 =(a−r)^2 −r^2 =a^2 −2ar  BC^2 =AD^2 +(AB−DC)^2   (a+r)^2 =a^2 −2ar+(a−r)^2   ⇒r=(a/6)
$${or}: \\ $$$${AD}^{\mathrm{2}} ={AC}^{\mathrm{2}} −{DC}^{\mathrm{2}} =\left({a}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} ={a}^{\mathrm{2}} −\mathrm{2}{ar} \\ $$$${BC}^{\mathrm{2}} ={AD}^{\mathrm{2}} +\left({AB}−{DC}\right)^{\mathrm{2}} \\ $$$$\left({a}+{r}\right)^{\mathrm{2}} ={a}^{\mathrm{2}} −\mathrm{2}{ar}+\left({a}−{r}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{r}=\frac{{a}}{\mathrm{6}} \\ $$
Commented by jagoll last updated on 06/Jan/20
how AC = a − r sir?
$${how}\:{AC}\:=\:{a}\:−\:{r}\:{sir}? \\ $$
Commented by mr W last updated on 06/Jan/20
Commented by mr W last updated on 06/Jan/20
AC=AE−CE=a−r
$${AC}={AE}−{CE}={a}−{r} \\ $$
Commented by Maclaurin Stickker last updated on 06/Jan/20
Yes, Mr W, you are right!
$${Yes},\:{Mr}\:{W},\:{you}\:{are}\:{right}! \\ $$
Commented by mr W last updated on 06/Jan/20
thanks for comfirming sir!
$${thanks}\:{for}\:{comfirming}\:{sir}! \\ $$
Commented by Tawa11 last updated on 29/Dec/21
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *