Menu Close

Question-77412




Question Number 77412 by BK last updated on 06/Jan/20
Commented by Tony Lin last updated on 06/Jan/20
ζ(s)=(1/1^s )+(1/2^s )+(1/3^s )+∙∙∙+(1/n^s )  ζ(2)=(1/1^2 )+(1/2^2 )+(1/3^2 )+∙∙∙+(1/n^2 )=(π^2 /6)  (1/2^2 )+(1/3^2 )+∙∙∙+(1/n^2 )=(π^2 /6)−1
$$\zeta\left({s}\right)=\frac{\mathrm{1}}{\mathrm{1}^{{s}} }+\frac{\mathrm{1}}{\mathrm{2}^{{s}} }+\frac{\mathrm{1}}{\mathrm{3}^{{s}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{n}^{{s}} } \\ $$$$\zeta\left(\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1} \\ $$
Commented by mr W last updated on 06/Jan/20
ζ(s)=(1/1^s )+(1/2^s )+(1/3^s )+∙∙∙+(1/n^s )+......  ζ(s)≠(1/1^s )+(1/2^s )+(1/3^s )+∙∙∙+(1/n^s )  (1/2^2 )+(1/3^2 )+∙∙∙+(1/n^2 )+.....=(π^2 /6)−1  (1/2^2 )+(1/3^2 )+∙∙∙+(1/n^2 )≠(π^2 /6)−1
$$\zeta\left({s}\right)=\frac{\mathrm{1}}{\mathrm{1}^{{s}} }+\frac{\mathrm{1}}{\mathrm{2}^{{s}} }+\frac{\mathrm{1}}{\mathrm{3}^{{s}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{n}^{{s}} }+…… \\ $$$$\zeta\left({s}\right)\neq\frac{\mathrm{1}}{\mathrm{1}^{{s}} }+\frac{\mathrm{1}}{\mathrm{2}^{{s}} }+\frac{\mathrm{1}}{\mathrm{3}^{{s}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{n}^{{s}} } \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+…..=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\centerdot\centerdot\centerdot+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\neq\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1} \\ $$
Commented by BK last updated on 06/Jan/20
thanks
$$\mathrm{thanks} \\ $$
Commented by Tony Lin last updated on 06/Jan/20
sorry I got it
$${sorry}\:{I}\:{got}\:{it} \\ $$
Commented by BK last updated on 06/Jan/20
(π^2 /6)−  prove that sir plz
$$\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\:\:\mathrm{prove}\:\mathrm{that}\:\mathrm{sir}\:\mathrm{plz} \\ $$
Commented by mathmax by abdo last updated on 06/Jan/20
not correct  ξ(s) =Σ_(n=1) ^∞  (1/n^s )  (its a infinite sum)  and (1/1^s ) +(1/2^s )+....+(1/n^s ) ≠ξ(s)
$${not}\:{correct}\:\:\xi\left({s}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{s}} }\:\:\left({its}\:{a}\:{infinite}\:{sum}\right) \\ $$$${and}\:\frac{\mathrm{1}}{\mathrm{1}^{{s}} }\:+\frac{\mathrm{1}}{\mathrm{2}^{{s}} }+….+\frac{\mathrm{1}}{{n}^{{s}} }\:\neq\xi\left({s}\right) \\ $$
Commented by mathmax by abdo last updated on 07/Jan/20
S=Σ_(k=1) ^n  (1/k^2 )−1 =Σ_(k=1) ^∞  (1/k^2 )−1−Σ_(k=n+1) ^∞  (1/k^2 )  =(π^2 /6)−1−Σ_(k=n+1) ^∞  (1/k^2 )
$${S}=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }−\mathrm{1}\:=\sum_{{k}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} }−\mathrm{1}−\sum_{{k}={n}+\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\mathrm{1}−\sum_{{k}={n}+\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *