Question Number 77506 by BK last updated on 07/Jan/20
Commented by BK last updated on 07/Jan/20
$$\left.\mathrm{A}\left.\right)\left.\mathrm{2}\left.\mathrm{011}\:\:\:\:\:\:\:\:\:\:\:\mathrm{B}\right)\mathrm{2012}\:\:\:\:\:\:\:\:\:\:\:\mathrm{C}\right)\mathrm{4021}\:\:\:\:\:\:\:\:\:\mathrm{D}\right)\mathrm{4023} \\ $$
Commented by MJS last updated on 07/Jan/20
$$\mathrm{why}\:\mathrm{not}\:\mathrm{ask}\:\mathrm{for}\:\mathrm{more}? \\ $$$$\mathrm{let}\:\mathrm{0}\leqslant{u},\:{v},\:{w},\:{x},\:{y},\:{z}<\mathrm{2020}^{\mathrm{2020}} \\ $$$$\mathrm{how}\:\mathrm{many}\:\mathrm{integers}\:\mathrm{are}\:\mathrm{there}\:\mathrm{when} \\ $$$${uxy}+{vyz}+{wzy}=\mathrm{0}\left(\mathrm{mod}\:\mathrm{2020}^{\mathrm{2020}} \right)\:\mathrm{and} \\ $$$${uvx}+{vwy}+{wuz}=\mathrm{0}\left(\mathrm{mod}\:\mathrm{2020}^{\mathrm{2020}} \right)\:\mathrm{are} \\ $$$$\mathrm{satisfied}? \\ $$
Answered by mr W last updated on 07/Jan/20
$${check}\:{the}\:{question}\:{please}! \\ $$$$ \\ $$$${if}\:\mathrm{0}\leqslant{x},{y},{z}\leqslant\mathrm{2011},\:{then} \\ $$$$\left.{Answer}\:{C}\right)\:\mathrm{4021} \\ $$$$ \\ $$$${if}\:\mathrm{0}\leqslant{x},{y},{z}<\mathrm{2011},\:{then} \\ $$$${Answer}\:\mathrm{4020} \\ $$
Commented by BK last updated on 07/Jan/20
$$\mathrm{step}\:\mathrm{by}\:\mathrm{step}\:\mathrm{solution}\:\mathrm{sir}\:\mathrm{plss} \\ $$
Commented by mr W last updated on 07/Jan/20
$${i}\:{calculated}\:“{one}\:{by}\:{one}''. \\ $$
Commented by mr W last updated on 07/Jan/20