Menu Close

Question-77539




Question Number 77539 by TawaTawa last updated on 07/Jan/20
Commented by TawaTawa last updated on 07/Jan/20
Sir  mrW please solve this question posted by  Maclaurin.  God bless you more sir
$$\mathrm{Sir}\:\:\mathrm{mrW}\:\mathrm{please}\:\mathrm{solve}\:\mathrm{this}\:\mathrm{question}\:\mathrm{posted}\:\mathrm{by}\:\:\mathrm{Maclaurin}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 07/Jan/20
(x/r)=((16)/9)  see original post.
$$\frac{{x}}{{r}}=\frac{\mathrm{16}}{\mathrm{9}} \\ $$$${see}\:{original}\:{post}. \\ $$
Commented by TawaTawa last updated on 07/Jan/20
Alright sir. God bless you
$$\mathrm{Alright}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you} \\ $$
Commented by mr W last updated on 08/Jan/20
Commented by mr W last updated on 08/Jan/20
as new exercise:  Find (y/z)  (red circles)
$${as}\:{new}\:{exercise}: \\ $$$${Find}\:\frac{{y}}{{z}} \\ $$$$\left({red}\:{circles}\right) \\ $$
Commented by TawaTawa last updated on 08/Jan/20
Sir, i will study previous once very well.
$$\mathrm{Sir},\:\mathrm{i}\:\mathrm{will}\:\mathrm{study}\:\mathrm{previous}\:\mathrm{once}\:\mathrm{very}\:\mathrm{well}. \\ $$
Commented by TawaTawa last updated on 09/Jan/20
I was busy with the Lambert W functions. Now am  through with it. I would like to test myself if i have truly  understood it by giving me question on it.
$$\mathrm{I}\:\mathrm{was}\:\mathrm{busy}\:\mathrm{with}\:\mathrm{the}\:\mathrm{Lambert}\:\mathrm{W}\:\mathrm{functions}.\:\mathrm{Now}\:\mathrm{am} \\ $$$$\mathrm{through}\:\mathrm{with}\:\mathrm{it}.\:\mathrm{I}\:\mathrm{would}\:\mathrm{like}\:\mathrm{to}\:\mathrm{test}\:\mathrm{myself}\:\mathrm{if}\:\mathrm{i}\:\mathrm{have}\:\mathrm{truly} \\ $$$$\mathrm{understood}\:\mathrm{it}\:\mathrm{by}\:\mathrm{giving}\:\mathrm{me}\:\mathrm{question}\:\mathrm{on}\:\mathrm{it}. \\ $$
Commented by TawaTawa last updated on 09/Jan/20
Geometry will be next if i am satisfied with Lambert
$$\mathrm{Geometry}\:\mathrm{will}\:\mathrm{be}\:\mathrm{next}\:\mathrm{if}\:\mathrm{i}\:\mathrm{am}\:\mathrm{satisfied}\:\mathrm{with}\:\mathrm{Lambert} \\ $$
Commented by TawaTawa last updated on 09/Jan/20
Am saving all this for now
$$\mathrm{Am}\:\mathrm{saving}\:\mathrm{all}\:\mathrm{this}\:\mathrm{for}\:\mathrm{now} \\ $$
Commented by mr W last updated on 09/Jan/20
i think you should have lernt all  things about Lambert function. just  apply that! just study the existing  questions in forum! i can′t give you  any new questions or i don′t want to  do this.
$${i}\:{think}\:{you}\:{should}\:{have}\:{lernt}\:{all} \\ $$$${things}\:{about}\:{Lambert}\:{function}.\:{just} \\ $$$${apply}\:{that}!\:{just}\:{study}\:{the}\:{existing} \\ $$$${questions}\:{in}\:{forum}!\:{i}\:{can}'{t}\:{give}\:{you} \\ $$$${any}\:{new}\:{questions}\:{or}\:{i}\:{don}'{t}\:{want}\:{to} \\ $$$${do}\:{this}. \\ $$
Commented by TawaTawa last updated on 09/Jan/20
Thanks sir, i will do that.
$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{will}\:\mathrm{do}\:\mathrm{that}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *