Menu Close

Question-77593




Question Number 77593 by BK last updated on 08/Jan/20
Commented by $@ty@m123 last updated on 08/Jan/20
The repeatation of this question   is sufficient to prove that Mr. BK  is none other than...
$${The}\:{repeatation}\:{of}\:{this}\:{question}\: \\ $$$${is}\:{sufficient}\:{to}\:{prove}\:{that}\:{Mr}.\:{BK} \\ $$$${is}\:{none}\:{other}\:{than}… \\ $$
Commented by BK last updated on 08/Jan/20
????  :(
$$????\:\::\left(\right. \\ $$
Commented by mr W last updated on 08/Jan/20
clear things need no proof!
$${clear}\:{things}\:{need}\:{no}\:{proof}! \\ $$
Commented by MJS last updated on 08/Jan/20
Sir BK, why do you ask this question?  ∫(dx/(sin x^2 ))=?  do you need the answer for your studies?  then you must have learned how to solve  ∫sin x^2  dx first. or are you just interested in  solving integrals? then you must already  understand a lot, show us how you solve  ∫(x/(sin x^2 ))dx or ∫xtan x^2  dx. then it makes sense  to discuss this given integral. otherwise I  feel like explaining multiplication to my cat
$$\mathrm{Sir}\:\mathrm{BK},\:\mathrm{why}\:\mathrm{do}\:\mathrm{you}\:\mathrm{ask}\:\mathrm{this}\:\mathrm{question}? \\ $$$$\int\frac{{dx}}{\mathrm{sin}\:{x}^{\mathrm{2}} }=? \\ $$$$\mathrm{do}\:\mathrm{you}\:\mathrm{need}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{for}\:\mathrm{your}\:\mathrm{studies}? \\ $$$$\mathrm{then}\:\mathrm{you}\:\mathrm{must}\:\mathrm{have}\:\mathrm{learned}\:\mathrm{how}\:\mathrm{to}\:\mathrm{solve} \\ $$$$\int\mathrm{sin}\:{x}^{\mathrm{2}} \:{dx}\:\mathrm{first}.\:\mathrm{or}\:\mathrm{are}\:\mathrm{you}\:\mathrm{just}\:\mathrm{interested}\:\mathrm{in} \\ $$$$\mathrm{solving}\:\mathrm{integrals}?\:\mathrm{then}\:\mathrm{you}\:\mathrm{must}\:\mathrm{already} \\ $$$$\mathrm{understand}\:\mathrm{a}\:\mathrm{lot},\:\mathrm{show}\:\mathrm{us}\:\mathrm{how}\:\mathrm{you}\:\mathrm{solve} \\ $$$$\int\frac{{x}}{\mathrm{sin}\:{x}^{\mathrm{2}} }{dx}\:\mathrm{or}\:\int{x}\mathrm{tan}\:{x}^{\mathrm{2}} \:{dx}.\:\mathrm{then}\:\mathrm{it}\:\mathrm{makes}\:\mathrm{sense} \\ $$$$\mathrm{to}\:\mathrm{discuss}\:\mathrm{this}\:\mathrm{given}\:\mathrm{integral}.\:\mathrm{otherwise}\:\mathrm{I} \\ $$$$\mathrm{feel}\:\mathrm{like}\:\mathrm{explaining}\:\mathrm{multiplication}\:\mathrm{to}\:\mathrm{my}\:\mathrm{cat} \\ $$
Commented by BK last updated on 08/Jan/20
specifiy the accuracy
$$\mathrm{specifiy}\:\mathrm{the}\:\mathrm{accuracy} \\ $$
Commented by $@ty@m123 last updated on 08/Jan/20
Same as the probability of drawing  a red ball from a contaioner  containing only red balls.
$${Same}\:{as}\:{the}\:{probability}\:{of}\:{drawing} \\ $$$${a}\:{red}\:{ball}\:{from}\:{a}\:{contaioner} \\ $$$${containing}\:{only}\:{red}\:{balls}. \\ $$
Commented by MJS last updated on 08/Jan/20
I′m from Mars, Jupiter and Saturn and where  I come from ∫(dx/(sin x^2 ))=Υ_ς ^(√(πe)) (x)+C. I hope this  will help
$$\mathrm{I}'\mathrm{m}\:\mathrm{from}\:\mathrm{Mars},\:\mathrm{Jupiter}\:\mathrm{and}\:\mathrm{Saturn}\:\mathrm{and}\:\mathrm{where} \\ $$$$\mathrm{I}\:\mathrm{come}\:\mathrm{from}\:\int\frac{{dx}}{\mathrm{sin}\:{x}^{\mathrm{2}} }=\Upsilon_{\varsigma} ^{\sqrt{\pi\mathrm{e}}} \left({x}\right)+{C}.\:\mathrm{I}\:\mathrm{hope}\:\mathrm{this} \\ $$$$\mathrm{will}\:\mathrm{help} \\ $$
Commented by mr W last updated on 08/Jan/20
for the case that he tomorrow posts   ∫(dx/(sin x^3 )) and the day after tomorrow  ∫(dx/(sin x^4 )) etc., you should tell him the  extended Martian Integral of the  Second Kind:  ∫(dx/(sin x^n ))=Υ_ς ^(√(πe)) (x∣((nπ)/2))+C
$${for}\:{the}\:{case}\:{that}\:{he}\:{tomorrow}\:{posts}\: \\ $$$$\int\frac{{dx}}{\mathrm{sin}\:{x}^{\mathrm{3}} }\:{and}\:{the}\:{day}\:{after}\:{tomorrow} \\ $$$$\int\frac{{dx}}{\mathrm{sin}\:{x}^{\mathrm{4}} }\:{etc}.,\:{you}\:{should}\:{tell}\:{him}\:{the} \\ $$$${extended}\:{Martian}\:{Integral}\:{of}\:{the} \\ $$$${Second}\:{Kind}: \\ $$$$\int\frac{{dx}}{\mathrm{sin}\:{x}^{{n}} }=\Upsilon_{\varsigma} ^{\sqrt{\pi\mathrm{e}}} \left({x}\mid\frac{{n}\pi}{\mathrm{2}}\right)+{C} \\ $$
Commented by MJS last updated on 08/Jan/20
��
Commented by mr W last updated on 08/Jan/20
i guess you won′t get an answer   from him, sir. he seems to be collecting  questions from all countries just in  order to post them here, even when  he doesn′t know what or why he asks.
$${i}\:{guess}\:{you}\:{won}'{t}\:{get}\:{an}\:{answer}\: \\ $$$${from}\:{him},\:{sir}.\:{he}\:{seems}\:{to}\:{be}\:{collecting} \\ $$$${questions}\:{from}\:{all}\:{countries}\:{just}\:{in} \\ $$$${order}\:{to}\:{post}\:{them}\:{here},\:{even}\:{when} \\ $$$${he}\:{doesn}'{t}\:{know}\:{what}\:{or}\:{why}\:{he}\:{asks}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *