Question Number 77883 by TawaTawa last updated on 11/Jan/20
Commented by TawaTawa last updated on 12/Jan/20
$$ \\ $$
Commented by mathmax by abdo last updated on 11/Jan/20
$$\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}{C}_{{n}} ^{{k}} \:\:={k}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} \:{dx}\:\Rightarrow{k}=\frac{\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:{C}_{{n}} ^{{k}} }{\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} \:{dx}} \\ $$$$=\frac{{A}_{{n}} }{{B}_{{n}} }\:\:\:{let}\:{p}\left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{\left(−\mathrm{1}\right)^{{k}} }{\mathrm{2}{k}+\mathrm{1}}\:{C}_{{n}} ^{{k}} \:{x}^{\mathrm{2}{k}+\mathrm{1}} \:\Rightarrow{A}_{{n}} ={p}\left(\mathrm{1}\right) \\ $$$${p}^{'} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}\:} \:\left(−\mathrm{1}\right)^{{k}} \:{C}_{{n}} ^{{k}\:} \left({x}^{\mathrm{2}} \right)^{{k}} \:\:=\sum_{{k}=\mathrm{0}} ^{{n}} {C}_{{n}} ^{{k}} \left(−{x}^{\mathrm{2}} \right)^{{k}} \:=\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} \:\Rightarrow \\ $$$${p}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} \:{dt}\:+{c}\:{we}\:{have}\:{c}={p}\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow{p}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} \:{dt} \\ $$$${p}\left(\mathrm{1}\right)\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right)^{{n}} {dt}\:=_{{t}={sin}\alpha} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({cos}^{\mathrm{2}} \alpha\right)^{{n}} \:{cos}\alpha\:{d}\alpha \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}+\mathrm{1}} \alpha\:{d}\alpha\:={A}_{{n}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} \:{dx}\:=_{{x}={sin}\alpha} \:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\alpha\left({cos}^{\mathrm{2}} \alpha\right)^{{n}−\mathrm{1}} \:{cos}\alpha\:{d}\alpha \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\alpha\:{cos}^{\mathrm{2}{n}−\mathrm{1}} \alpha\:{d}\alpha\:={B}_{{n}} \:\Rightarrow\:{k}\:=\frac{\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}+\mathrm{1}} \alpha{d}\alpha}{\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\alpha\:{cos}^{\mathrm{2}{n}−\mathrm{1}} \alpha\:{d}\alpha} \\ $$$${let}\:\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {cos}_{\alpha} ^{\mathrm{2}{n}−\mathrm{1}} \:{cos}^{\mathrm{2}} \alpha\:{d}\alpha\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}−\mathrm{1}} \alpha\left(\mathrm{1}−{sin}^{\mathrm{2}} \alpha\right){d}\alpha \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}−\mathrm{1}} \alpha\:{d}\alpha\:+\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left(−{sin}\alpha\:{cos}^{\mathrm{2}{n}−\mathrm{1}} \alpha\right){sin}\alpha\:{d}\alpha \\ $$$$={A}_{{n}−\mathrm{1}} +\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(…\right){d}\alpha\:\:{by}\:{parts}\:\:{u}^{'} =−{sin}\alpha\:{cos}^{\mathrm{2}{n}−\mathrm{1}} \alpha\:{and}\:{v}={sin}\alpha \\ $$$${we}\:{get}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(−{sin}\alpha\:{cos}^{\mathrm{2}{n}−\mathrm{1}} \alpha\right){sin}\alpha\:{d}\alpha \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}{n}}{cos}^{\mathrm{2}{n}} \alpha\:{sin}\alpha\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} −\frac{\mathrm{1}}{\mathrm{2}{n}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:{cos}^{\mathrm{2}{n}} \alpha\:{cos}\alpha\:{d}\alpha \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}{n}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{2}{n}+\mathrm{1}} \alpha\:{d}\alpha\:=−\frac{\mathrm{1}}{\mathrm{2}{n}}\:{A}_{{n}} \:\Rightarrow{A}_{{n}} ={A}_{{n}−\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}{n}}\:{A}_{{n}} \:\Rightarrow \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}}\right){A}_{{n}} \:={A}_{{n}−\mathrm{1}} \:\Rightarrow\left(\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}{n}}\right)\:{A}_{{n}} ={A}_{{n}−\mathrm{1}} \:\Rightarrow{A}_{{n}} =\frac{\mathrm{2}{n}}{\mathrm{2}{n}+\mathrm{1}}\:{A}_{{n}−\mathrm{1}} \:\Rightarrow \\ $$$$\prod_{{k}=\mathrm{1}} ^{{n}} \:{A}_{{k}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{2}{k}}{\mathrm{2}{k}+\mathrm{1}}×\prod_{{k}=\mathrm{1}} ^{{n}} {A}_{{k}−\mathrm{1}} \:\:\Rightarrow{A}_{\mathrm{1}} .{A}_{\mathrm{2}} ….{A}_{{n}} =\prod_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{2}{k}}{\mathrm{2}{k}+\mathrm{1}}.{A}_{\mathrm{0}} .{A}_{\mathrm{1}} ..{A}_{{n}−\mathrm{1}} \\ $$$$\Rightarrow\:{A}_{{n}} =\frac{\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{2}{k}\right)}{\prod_{{k}=\mathrm{1}} ^{{n}} \left(\mathrm{2}{k}+\mathrm{1}\right)}×{A}_{\mathrm{0}} \:\:=\frac{\mathrm{2}^{{n}} \:{n}!}{\mathrm{3}.\mathrm{5}.\mathrm{7}…..\left(\mathrm{2}{n}+\mathrm{1}\right)}\:\:\left({A}_{\mathrm{0}} =\mathrm{1}\right) \\ $$$$\Rightarrow\:{A}_{{n}} =\frac{\mathrm{2}^{{n}} {n}!×\mathrm{2}^{{n}} {n}!}{\mathrm{2}.\mathrm{3}.\mathrm{4}.\mathrm{5}….\left(\mathrm{2}{n}\right)\left(\mathrm{2}{n}+\mathrm{1}\right)}\:=\frac{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$${rest}\:{calculus}\:{of}\:{B}_{{n}} …{be}\:{continued}.. \\ $$
Commented by TawaTawa last updated on 11/Jan/20
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{waiting}\:\mathrm{for}\:\mathrm{the}\:\mathrm{rest}. \\ $$
Commented by mathmax by abdo last updated on 12/Jan/20
$${B}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{sin}\alpha\:{cos}^{\mathrm{2}{n}−\mathrm{1}} \alpha\:{d}\alpha\:=\left[−\frac{\mathrm{1}}{\mathrm{2}{n}}{cos}^{\mathrm{2}{n}} \alpha\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\frac{\mathrm{1}}{\mathrm{2}{n}}\:\Rightarrow \\ $$$${k}=\frac{{A}_{{n}} }{{B}_{{n}} }\:=\frac{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}×\left(\mathrm{2}{n}\right)\:=\frac{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} {n}\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$
Commented by mathmax by abdo last updated on 12/Jan/20
$${so}\:{the}\:{correct}\:{answer}\:{is}\:\left({d}\right) \\ $$
Commented by TawaTawa last updated on 12/Jan/20
$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$
Commented by TawaTawa last updated on 12/Jan/20
$$\mathrm{Sir},\:\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\:\mathrm{16}\:\mathrm{and}\:\mathrm{17}\:\mathrm{in}\:\mathrm{question}\:\mathrm{77881} \\ $$
Answered by mr W last updated on 12/Jan/20
$$\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} =\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{r}} ^{{n}} \left(−{x}^{\mathrm{2}} \right)^{{r}} =\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{r}} {C}_{{r}} {x}^{\mathrm{2}{r}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx}=\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\left(−\mathrm{1}\right)^{{r}} {C}_{{r}} \int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}{r}} {dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx}=\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{r}} {C}_{{r}} }{\mathrm{2}{r}+\mathrm{1}}=\frac{{C}_{\mathrm{0}} }{\mathrm{1}}−\frac{{C}_{\mathrm{1}} }{\mathrm{3}}+\frac{{C}_{\mathrm{2}} }{\mathrm{5}}−…+\frac{\left(−\mathrm{1}\right)^{{n}} {C}_{{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$${let}\:{I}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx} \\ $$$${I}_{{n}} =\left[{x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} \right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} {x}×{n}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} \left(−\mathrm{2}{x}\right){dx} \\ $$$$=\mathrm{0}+\mathrm{2}{n}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dx} \\ $$$$=−\mathrm{2}{n}\left[\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dx}−\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dx}\right] \\ $$$$=−\mathrm{2}{n}\left[\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} {dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dx}\right] \\ $$$$=−\mathrm{2}{n}\left[{I}_{{n}} −{I}_{{n}−\mathrm{1}} \right] \\ $$$${I}_{{n}} =−\mathrm{2}{nI}_{{n}} +\mathrm{2}{nI}_{{n}−\mathrm{1}} \\ $$$$\Rightarrow{I}_{{n}} =\frac{\mathrm{2}{n}}{\mathrm{2}{n}+\mathrm{1}}{I}_{{n}−\mathrm{1}} \\ $$$$\Rightarrow{I}_{{n}} =\frac{\mathrm{2}{n}}{\mathrm{2}{n}+\mathrm{1}}×\frac{\mathrm{2}\left({n}−\mathrm{1}\right)}{\mathrm{2}{n}−\mathrm{1}}×…×\frac{\mathrm{2}×\mathrm{1}}{\mathrm{2}×\mathrm{1}+\mathrm{1}}{I}_{\mathrm{0}} \\ $$$${I}_{\mathrm{0}} =\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{0}} {dx}=\mathrm{1} \\ $$$$\Rightarrow{I}_{{n}} =\frac{\mathrm{2}^{{n}} {n}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)!!}=\frac{\mathrm{2}^{{n}} {n}!\left(\mathrm{2}{n}\right)!!}{\left(\mathrm{2}{n}+\mathrm{1}\right)!!\left(\mathrm{2}{n}\right)!!}=\frac{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!} \\ $$$${let}\:{J}=\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {dx} \\ $$$${J}=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}−\mathrm{1}} {d}\left(\mathrm{1}−{x}^{\mathrm{2}} \right) \\ $$$$=−\left[\frac{\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{{n}} }{\mathrm{2}{n}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{n}} \\ $$$$ \\ $$$${I}_{{n}} ={kJ} \\ $$$$\frac{\mathrm{2}^{\mathrm{2}{n}} \left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}={k}×\frac{\mathrm{1}}{\mathrm{2}{n}} \\ $$$$\Rightarrow{k}=\frac{\mathrm{2}^{\mathrm{2}{n}+\mathrm{1}} \centerdot{n}\centerdot\left({n}!\right)^{\mathrm{2}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)!}\:\:\:\left(=\frac{\mathrm{2}^{{n}+\mathrm{1}} \centerdot{n}\centerdot{n}!}{\left(\mathrm{2}{n}+\mathrm{1}\right)!!}\right) \\ $$$$\Rightarrow{answer}\:{D}\:{is}\:{correct} \\ $$
Commented by TawaTawa last updated on 12/Jan/20
$$\mathrm{You}\:\mathrm{are}\:\mathrm{right}\:\mathrm{sir}.\:\:\mathrm{Option}\:\mathrm{D}\:\mathrm{is}\:\mathrm{correct}. \\ $$$$\mathrm{I}\:\mathrm{just}\:\mathrm{check}\:\mathrm{it}\:\mathrm{well}\:\mathrm{now}. \\ $$$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by TawaTawa last updated on 12/Jan/20
$$\mathrm{Thanks}\:\mathrm{for}\:\mathrm{your}\:\mathrm{time}. \\ $$
Commented by TawaTawa last updated on 12/Jan/20
$$\mathrm{Sir}\:\mathrm{please}\:\mathrm{help}\:\mathrm{withquestion}\:\:\mathrm{77902}. \\ $$