Question Number 78037 by Pratah last updated on 13/Jan/20
Commented by MJS last updated on 13/Jan/20
$$\mathrm{see}\:\mathrm{question}\:\mathrm{77009} \\ $$
Commented by Pratah last updated on 13/Jan/20
$$\mathrm{parameter}\:\:\mathrm{parameters}\:\mathrm{X},\:\mathrm{where}\:\:\mathrm{the}\:\mathrm{current}\:\mathrm{value}\:\mathrm{is}. \\ $$
Commented by mr W last updated on 14/Jan/20
$${sir}\:{Pratah}\:\left({BK},\:{Master},{etc}.\right): \\ $$$${i}'{d}\:{like}\:{to}\:{give}\:{an}\:{answer}\:{to}\:{this}\:{question}, \\ $$$${but}\:{i}\:{really}\:{don}'{t}\:{know}\:{what}\:{you}\:{exactly} \\ $$$${want}.\:{can}\:{you}\:{give}\:{a}\:{little}\:{explanation} \\ $$$${what}\:{you}\:{want}? \\ $$
Commented by mr W last updated on 14/Jan/20
$${do}\:{you}\:{want}\:{something}\:{like}\:{this}: \\ $$$$\frac{{x}}{{a}}=\left(\frac{{c}}{{a}}+\frac{{a}}{{c}}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} \pm\sqrt{\left[\left(\frac{{c}}{{a}}+\frac{{a}}{{c}}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} +\mathrm{1}\right]\left[\left(\frac{{c}}{{a}}+\frac{{a}}{{c}}\right)^{\frac{\mathrm{1}}{\mathrm{5}}} −\mathrm{1}\right]} \\ $$
Commented by Pratah last updated on 14/Jan/20
$$\mathrm{no}\:\mathrm{sir} \\ $$
Commented by Pratah last updated on 14/Jan/20
$$? \\ $$
Commented by mr W last updated on 14/Jan/20
$${then}\:{what}\:{is}\:{exactly}\:{the}\:{question}? \\ $$
Commented by mr W last updated on 14/Jan/20
$${sir}\:{Pratah}\:\left({BK},\:{Master},{etc}.\right): \\ $$$${some}\:{minutes}\:{ago},\:{as}\:{i}\:{gave}\:{my}\:{comment} \\ $$$${above},\:{i}\:{could}\:{open}\:{the}\:{post}\:\mathrm{77009}. \\ $$$${after}\:{i}\:{have}\:{given}\:{the}\:{comment},\:{you} \\ $$$${have}\:{also}\:{deleted}\:{that}\:{old}\:{post}.\:{it}\:{can}\:{not} \\ $$$${be}\:{opened}\:{anymore}. \\ $$$${why}\:\:{do}\:{you}\:{do}\:{such}\:{things}\:{sir}? \\ $$
Commented by Pratah last updated on 14/Jan/20
$$\mathrm{can}\:\mathrm{you}\:\mathrm{find}\:\mathrm{the}\:\mathrm{relationship}\:\mathrm{between}\:\mathrm{a}\:\mathrm{and}\:\mathrm{c}.? \\ $$
Commented by MJS last updated on 14/Jan/20
$$\mathrm{another}\:\mathrm{path} \\ $$$$\mathrm{let}\:{t}=\frac{{x}}{{a}} \\ $$$$\mathrm{eliminate}\:{c} \\ $$$$\mathrm{let}\:{y}={t}^{\mathrm{4}} \\ $$$$\mathrm{solve}\:\mathrm{for}\:{y}\:\mathrm{by}\:\mathrm{finding}\:\mathrm{the}\:\mathrm{2}\:\mathrm{square}\:\mathrm{factors}\:\mathrm{of} \\ $$$$\:\:\:\:\:\mathrm{the}\:\mathrm{polynome} \\ $$
Commented by mr W last updated on 14/Jan/20
$${sir}\:{Pratah}\:\left({BK},\:{Master},{etc}.\right): \\ $$$${i}\:{have}\:{posted}\:{my}\:{answer}\:{in}\:{a}\:{new}\: \\ $$$${post}.\:{is}\:{that}\:{answer}\:{right}?\:{please} \\ $$$${give}\:{substantial}\:{feedback}. \\ $$