Menu Close

Question-78083




Question Number 78083 by TawaTawa last updated on 14/Jan/20
Commented by john santu last updated on 14/Jan/20
sir this ambigue 21600!
$${sir}\:{this}\:{ambigue}\:\mathrm{21600}!\: \\ $$
Commented by TawaTawa last updated on 14/Jan/20
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by john santu last updated on 14/Jan/20
wrong sir ≠31600!
$${wrong}\:{sir}\:\neq\mathrm{31600}! \\ $$
Commented by mr W last updated on 14/Jan/20
sir, 31600 is a typo of 21600. you can  look at the formula.
$${sir},\:\mathrm{31600}\:{is}\:{a}\:{typo}\:{of}\:\mathrm{21600}.\:{you}\:{can} \\ $$$${look}\:{at}\:{the}\:{formula}. \\ $$
Commented by mr W last updated on 14/Jan/20
C_4 ^6 ×C_3 ^5 ×4!×3!=21600!
$${C}_{\mathrm{4}} ^{\mathrm{6}} ×{C}_{\mathrm{3}} ^{\mathrm{5}} ×\mathrm{4}!×\mathrm{3}!=\mathrm{21600}! \\ $$
Answered by john santu last updated on 14/Jan/20
( _4 ^6 )×( _3 ^5 )×4!×3! =  ((6×5)/(2×1))×((5×4)/(2×1))×24×6 =  15×10×144=21600
$$\left(\underset{\mathrm{4}} {\overset{\mathrm{6}} {\:}}\right)×\left(\underset{\mathrm{3}} {\overset{\mathrm{5}} {\:}}\right)×\mathrm{4}!×\mathrm{3}!\:= \\ $$$$\frac{\mathrm{6}×\mathrm{5}}{\mathrm{2}×\mathrm{1}}×\frac{\mathrm{5}×\mathrm{4}}{\mathrm{2}×\mathrm{1}}×\mathrm{24}×\mathrm{6}\:= \\ $$$$\mathrm{15}×\mathrm{10}×\mathrm{144}=\mathrm{21600} \\ $$
Commented by TawaTawa last updated on 14/Jan/20
God bless you sir
$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$
Commented by john santu last updated on 14/Jan/20
thanks
$${thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *