Menu Close

Question-78105




Question Number 78105 by aliesam last updated on 14/Jan/20
Answered by Kunal12588 last updated on 14/Jan/20
(dy/dx)+(tan x)y=sin 2x  This is a linear differential equation  differential equation of the type  (dy/dx)+Px=Q  ; P & Q are function of x only  P = tan x, Q = sin 2x  I.F. = e^(∫P dx)   ⇒I.F. = e^(∫tan x dx)   ⇒I.F. = e^(log ∣sec x∣) =sec x  solution of differential equation  y(I.F)=∫(I.F)×Q dx  ⇒y sec x = ∫ sec x 2 sin x cos x sx  ⇒y sec x = 2 ∫ sin x dx  ⇒y sec x = − 2 cos x + C  ⇒y= −2 cos^2 x + C cos x
$$\frac{{dy}}{{dx}}+\left({tan}\:{x}\right){y}={sin}\:\mathrm{2}{x} \\ $$$${This}\:{is}\:{a}\:{linear}\:{differential}\:{equation} \\ $$$${differential}\:{equation}\:{of}\:{the}\:{type} \\ $$$$\frac{{dy}}{{dx}}+{Px}={Q}\:\:;\:{P}\:\&\:{Q}\:{are}\:{function}\:{of}\:{x}\:{only} \\ $$$${P}\:=\:{tan}\:{x},\:{Q}\:=\:{sin}\:\mathrm{2}{x} \\ $$$${I}.{F}.\:=\:{e}^{\int{P}\:{dx}} \\ $$$$\Rightarrow{I}.{F}.\:=\:{e}^{\int{tan}\:{x}\:{dx}} \\ $$$$\Rightarrow{I}.{F}.\:=\:{e}^{{log}\:\mid{sec}\:{x}\mid} ={sec}\:{x} \\ $$$${solution}\:{of}\:{differential}\:{equation} \\ $$$${y}\left({I}.{F}\right)=\int\left({I}.{F}\right)×{Q}\:{dx} \\ $$$$\Rightarrow{y}\:{sec}\:{x}\:=\:\int\:{sec}\:{x}\:\mathrm{2}\:{sin}\:{x}\:{cos}\:{x}\:{sx} \\ $$$$\Rightarrow{y}\:{sec}\:{x}\:=\:\mathrm{2}\:\int\:{sin}\:{x}\:{dx} \\ $$$$\Rightarrow{y}\:{sec}\:{x}\:=\:−\:\mathrm{2}\:{cos}\:{x}\:+\:{C} \\ $$$$\Rightarrow{y}=\:−\mathrm{2}\:{cos}^{\mathrm{2}} {x}\:+\:{C}\:{cos}\:{x} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *