Menu Close

Question-78108




Question Number 78108 by mr W last updated on 14/Jan/20
Commented by mr W last updated on 14/Jan/20
find the relation between a and c.    (i reposted the question here to avoid  that the solution will be deleted by  someone.)
findtherelationbetweenaandc.(irepostedthequestionheretoavoidthatthesolutionwillbedeletedbysomeone.)
Answered by mr W last updated on 14/Jan/20
(i)+(ii):  32((c/a)+(a/c))=((x/a))^5 +5((x/a))^3 +10((x/a))+10((a/x))+5((a/x))^3 +((a/x))^5   32((c/a)+(a/c))=((x/a)+(a/x))^5   ⇒(x/a)+(a/x)=2((c/a)+(a/c))^(1/5)    ...(I)  (i)−(ii):  32((c/a)−(a/c))=((x/a))^5 −5((x/a))^3 +10((x/a))−10((a/x))+5((a/x))^3 −((a/x))^5   32((c/a)−(a/c))=((x/a)−(a/x))^5   ⇒(x/a)−(a/x)=2((c/a)−(a/c))^(1/5)      ...(II)    (I)^2 −(II)^2 :  4=4((c/a)+(a/c))^(2/5) −4((c/a)−(a/c))^(2/5)   ⇒((c/a)+(a/c))^(2/5) −((c/a)−(a/c))^(2/5) =1  or  ⇒((((c/a))^2 +((a/c))^2 +2))^(1/5) −((((c/a))^2 +((a/c))^2 −2))^(1/5) =1  let ((c/a))^2 +((a/c))^2 −2=s  ⇒((s+4))^(1/5) −(s)^(1/5) =1  ⇒((s+4))^(1/5) =(s)^(1/5) +1  ⇒s+4=s+5((s)^(1/5) )^4 +10((s)^(1/5) )^3 +10((s)^(1/5) )^2 +5((s)^(1/5) )+1  ⇒⇒5((s)^(1/5) )^4 +10((s)^(1/5) )^3 +10((s)^(1/5) )^2 +5((s)^(1/5) )−3=0  let t=(s)^(1/5) =(( ((c/a))^2 +((a/c))^2 −2))^(1/5)   ⇒5t^4 +10t^3 +10t^2 +5t−3=0  ⇒5(t^2 +t)^2 +5(t^2 +t)−3=0  ⇒t^2 (t+1)^2 +t(t+1)−(3/5)=0  ⇒t^2 (t+1)^2 +t(t+1)+(1/4)−((3/5)+(1/4))=0  ⇒[t(t+1)+(1/2)]^2 =(((√(85))/(10)))^2   ⇒t(t+1)+(1/2)=((√(85))/(10))  ⇒t^2 +t+(1/2)−((√(85))/(10))=0  ⇒t=(1/4)(−1±(√(((8(√(85)))/5)−7)))  ⇒(( ((c/a))^2 +((a/c))^2 −2))^(1/5) =(1/4)(−1+(√(((8(√(85)))/5)−7)))  ⇒ (c/a)−(a/c)=±(1/2^5 )(−1+(√(((8(√(85)))/5)−7)))^(5/2) =μ  ((c/a))^2 −μ((c/a))−1=0  ⇒(c/a)=(1/2)(μ±(√(μ^2 +4)))  ⇒(c/a)=±(1/(64)){(−1+(√(((8(√(85)))/5)−7)))^(5/2) ±(√((−1+(√(((8(√(85)))/5)−7)))^5 +4096))}  or  (c/a)≈±0.971516, ±1.029319
(i)+(ii):32(ca+ac)=(xa)5+5(xa)3+10(xa)+10(ax)+5(ax)3+(ax)532(ca+ac)=(xa+ax)5xa+ax=2(ca+ac)15(I)(i)(ii):32(caac)=(xa)55(xa)3+10(xa)10(ax)+5(ax)3(ax)532(caac)=(xaax)5xaax=2(caac)15(II)(I)2(II)2:4=4(ca+ac)254(caac)25(ca+ac)25(caac)25=1or(ca)2+(ac)2+25(ca)2+(ac)225=1let(ca)2+(ac)22=ss+45s5=1s+45=s5+1s+4=s+5(s5)4+10(s5)3+10(s5)2+5(s5)+1⇒⇒5(s5)4+10(s5)3+10(s5)2+5(s5)3=0lett=s5=(ca)2+(ac)2255t4+10t3+10t2+5t3=05(t2+t)2+5(t2+t)3=0t2(t+1)2+t(t+1)35=0t2(t+1)2+t(t+1)+14(35+14)=0[t(t+1)+12]2=(8510)2t(t+1)+12=8510t2+t+128510=0t=14(1±88557)(ca)2+(ac)225=14(1+88557)caac=±125(1+88557)5/2=μ(ca)2μ(ca)1=0ca=12(μ±μ2+4)ca=±164{(1+88557)5/2±(1+88557)5+4096}orca±0.971516,±1.029319
Commented by TawaTawa last updated on 14/Jan/20
Weldone sir. God bless you.
Weldonesir.Godblessyou.

Leave a Reply

Your email address will not be published. Required fields are marked *