Question Number 78198 by john santu last updated on 15/Jan/20

Commented by john santu last updated on 15/Jan/20

Commented by MJS last updated on 15/Jan/20

Commented by john santu last updated on 15/Jan/20

Commented by mathmax by abdo last updated on 15/Jan/20
![let I =∫_0 ^(π/2) (√(1−sin(x)))dx ⇒I =∫_0 ^(π/2) (√(1−cos((π/2)−x)))dx =_((π/2)−x =t) −∫_0 ^(π/2) (√(1−cost))(−dt) =∫_0 ^(π/2) (√(1−cost))dt =∫_0 ^(π/2) (√(2sin^2 ((t/2))))dt =(√2)∫_0 ^(π/2) sin((t/2))dt =−2(√2)[cos((t/2))]_0 ^(π/2) =−2(√2)(((√2)/2)−1) =−2 +2(√2) ⇒ I =2(√2)−2](https://www.tinkutara.com/question/Q78247.png)
Answered by MJS last updated on 15/Jan/20
![two other possibilities (1) ∫(√(1−sin x))dx= [t=(√(1−sin x)) → dx=−((2(√(1−sin x)))/(cos x))dx] =∫((−2t)/( (√(2−t^2 ))))dt=2(√(2−t^2 ))=2(√(1+sin x))+C (2) ∫(√(1−sin x))dx= [t=sin x → dx=(dt/(cos x))] =∫(dt/( (√(t+1))))=2(√(t+1))=2(√(1+sin x))+C](https://www.tinkutara.com/question/Q78205.png)
Commented by jagoll last updated on 15/Jan/20

Commented by MJS last updated on 15/Jan/20
