Menu Close

Question-78198




Question Number 78198 by john santu last updated on 15/Jan/20
Commented by john santu last updated on 15/Jan/20
dear Mjs sir.  i ask for your opinion on this answer?  right or not.
dearMjssir.iaskforyouropiniononthisanswer?rightornot.
Commented by MJS last updated on 15/Jan/20
right!
right!
Commented by john santu last updated on 15/Jan/20
thanks sir
thankssir
Commented by mathmax by abdo last updated on 15/Jan/20
let I =∫_0 ^(π/2) (√(1−sin(x)))dx ⇒I =∫_0 ^(π/2) (√(1−cos((π/2)−x)))dx  =_((π/2)−x =t)     −∫_0 ^(π/2) (√(1−cost))(−dt) =∫_0 ^(π/2) (√(1−cost))dt  =∫_0 ^(π/2) (√(2sin^2 ((t/2))))dt =(√2)∫_0 ^(π/2) sin((t/2))dt  =−2(√2)[cos((t/2))]_0 ^(π/2)  =−2(√2)(((√2)/2)−1) =−2 +2(√2) ⇒  I =2(√2)−2
letI=0π21sin(x)dxI=0π21cos(π2x)dx=π2x=t0π21cost(dt)=0π21costdt=0π22sin2(t2)dt=20π2sin(t2)dt=22[cos(t2)]0π2=22(221)=2+22I=222
Answered by MJS last updated on 15/Jan/20
two other possibilities  (1)  ∫(√(1−sin x))dx=       [t=(√(1−sin x)) → dx=−((2(√(1−sin x)))/(cos x))dx]  =∫((−2t)/( (√(2−t^2 ))))dt=2(√(2−t^2 ))=2(√(1+sin x))+C    (2)  ∫(√(1−sin x))dx=       [t=sin x → dx=(dt/(cos x))]  =∫(dt/( (√(t+1))))=2(√(t+1))=2(√(1+sin x))+C
twootherpossibilities(1)1sinxdx=[t=1sinxdx=21sinxcosxdx]=2t2t2dt=22t2=21+sinx+C(2)1sinxdx=[t=sinxdx=dtcosx]=dtt+1=2t+1=21+sinx+C
Commented by jagoll last updated on 15/Jan/20
waw...amazing sir
wawamazingsir
Commented by MJS last updated on 15/Jan/20
...sorry there had been a typo, now it′s correct
sorrytherehadbeenatypo,nowitscorrect

Leave a Reply

Your email address will not be published. Required fields are marked *