Menu Close

Question-7824




Question Number 7824 by ridwan balatif last updated on 17/Sep/16
Commented by Yozzia last updated on 17/Sep/16
n×n!=(n+1−1)n!=(n+1)!−n!  ⇒Σ_(i=1) ^n r!r=(n+1)!−1
$${n}×{n}!=\left({n}+\mathrm{1}−\mathrm{1}\right){n}!=\left({n}+\mathrm{1}\right)!−{n}! \\ $$$$\Rightarrow\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}{r}!{r}=\left({n}+\mathrm{1}\right)!−\mathrm{1} \\ $$
Commented by prakash jain last updated on 17/Sep/16
English translation, please
$$\mathrm{English}\:\mathrm{translation},\:\mathrm{please} \\ $$
Commented by ridwan balatif last updated on 17/Sep/16
you need to count  1.1!+2.2!+...+n.n!
$${you}\:{need}\:{to}\:{count} \\ $$$$\mathrm{1}.\mathrm{1}!+\mathrm{2}.\mathrm{2}!+…+{n}.{n}! \\ $$
Commented by FilupSmith last updated on 17/Sep/16
1×1!+2×2!+...+n×n!  =Σ_(k=1) ^n k(k!)  =Σ_(k=1) ^n k^2 (k−1)!
$$\mathrm{1}×\mathrm{1}!+\mathrm{2}×\mathrm{2}!+…+{n}×{n}! \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}\left({k}!\right) \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{k}^{\mathrm{2}} \left({k}−\mathrm{1}\right)! \\ $$
Answered by prakash jain last updated on 02/Oct/16
see comments
$$\mathrm{see}\:\mathrm{comments} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *