Question Number 78289 by ajfour last updated on 15/Jan/20
Commented by ajfour last updated on 15/Jan/20
$${Find}\:\theta\:,\:{given}\:\alpha. \\ $$
Answered by mr W last updated on 15/Jan/20
$${R}={radius} \\ $$$$\frac{\mathrm{2}{R}\:\mathrm{cos}\:\alpha}{\mathrm{cos}\:\theta\:\mathrm{sin}\:\left(\mathrm{2}\theta+\alpha\right)}=\frac{{R}}{\mathrm{sin}\:\theta} \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{2}\theta+\alpha\right)}{\mathrm{cos}\:\alpha}=\frac{\mathrm{2}\:\mathrm{sin}\:\theta}{\mathrm{cos}\:\theta} \\ $$$$\frac{\mathrm{sin}\:\left(\mathrm{2}\theta\right)\:\mathrm{cos}\:\alpha+\mathrm{cos}\:\left(\mathrm{2}\theta\right)\:\mathrm{sin}\:\alpha}{\mathrm{cos}\:\alpha}=\mathrm{2}\:\mathrm{tan}\:\theta \\ $$$$\mathrm{sin}\:\left(\mathrm{2}\theta\right)+\mathrm{tan}\:\alpha\:\mathrm{cos}\:\left(\mathrm{2}\theta\right)=\mathrm{2}\:\mathrm{tan}\:\theta \\ $$$$\mathrm{tan}\:\alpha\left(\mathrm{2}\:\mathrm{cos}^{\mathrm{2}} \:\theta−\mathrm{1}\right)=\mathrm{2}\:\mathrm{tan}\:\theta\:\left(\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:\theta\right) \\ $$$$\mathrm{tan}\:\alpha\left(\frac{\mathrm{2}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}−\mathrm{1}\right)=\mathrm{2}\:\mathrm{tan}\:\theta\:\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}\right) \\ $$$$\mathrm{tan}\:\alpha\left(\frac{\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}\right)=\mathrm{2}\:\mathrm{tan}\:\theta\:\left(\frac{\mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:\theta}\right) \\ $$$$\mathrm{tan}\:\alpha\left(\mathrm{1}−\mathrm{tan}^{\mathrm{2}} \:\theta\right)=\mathrm{2}\:\mathrm{tan}^{\mathrm{3}} \:\theta \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{3}} \:\theta}−\frac{\mathrm{1}}{\mathrm{tan}\:\theta}−\frac{\mathrm{2}}{\mathrm{tan}\:\alpha}=\mathrm{0} \\ $$$${let}\:{t}=\frac{\mathrm{1}}{\mathrm{tan}\:\theta},\:{a}=\frac{\mathrm{1}}{\mathrm{tan}\:\alpha} \\ $$$$\Rightarrow{t}^{\mathrm{3}} −{t}−\mathrm{2}{a}=\mathrm{0} \\ $$$$\Rightarrow{t}=\sqrt[{\mathrm{3}}]{\sqrt{{a}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{27}}}+{a}}−\sqrt[{\mathrm{3}}]{\sqrt{{a}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{27}}}−{a}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{tan}\:\theta}=\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{1}}{\mathrm{27}}}+\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}}−\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{1}}{\mathrm{27}}}−\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}} \\ $$$$\Rightarrow\theta=\frac{\pi}{\mathrm{2}}−\mathrm{tan}^{−\mathrm{1}} \left(\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{1}}{\mathrm{27}}}+\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}}−\sqrt[{\mathrm{3}}]{\sqrt{\frac{\mathrm{1}}{\mathrm{tan}^{\mathrm{2}} \:\alpha}−\frac{\mathrm{1}}{\mathrm{27}}}−\frac{\mathrm{1}}{\mathrm{tan}\:\alpha}}\right) \\ $$
Commented by ajfour last updated on 16/Jan/20
$${Thank}\:{you}\:{Sir},\:{but}\:{soon} \\ $$$${I}\:{am}\:{going}\:{to}\:{find}\:{a}\:{way}\:{out} \\ $$$${of}\:{this}\:{cumbersome}\:{answer}. \\ $$