Menu Close

Question-78392




Question Number 78392 by jagoll last updated on 17/Jan/20
Answered by john santu last updated on 17/Jan/20
let h= cos x(√(cos 2x))((cos 3x))^(1/(  3))  ((cos 4x))^(1/4) ... ((cos nx))^(1/n)   ln(h)= ln(cos x)+(1/2)ln(cos 2x)+(1/3)ln(cos 3x)+...+(1/n)ln(cos nx)  (dh/dx)=((−sin x)/(cos x))−((sin 2x)/(cos 2x))−((sin 3x)/(cos 3x))−...−((sin nx)/(cos nx))  now we use L′Hopital rule  lim_(x→0)  ((tan x+tan 2x+tan 3x+...+tan nx)/(2x))=  ((1+2+3+4+...+n)/2)= ((n(n+1))/4)
$${let}\:{h}=\:\mathrm{cos}\:{x}\sqrt{\mathrm{cos}\:\mathrm{2}{x}}\sqrt[{\:\:\mathrm{3}}]{\mathrm{cos}\:\mathrm{3}{x}}\:\sqrt[{\mathrm{4}}]{\mathrm{cos}\:\mathrm{4}{x}}…\:\sqrt[{{n}}]{\mathrm{cos}\:{nx}} \\ $$$${ln}\left({h}\right)=\:{ln}\left(\mathrm{cos}\:{x}\right)+\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{cos}\:\mathrm{2}{x}\right)+\frac{\mathrm{1}}{\mathrm{3}}{ln}\left(\mathrm{cos}\:\mathrm{3}{x}\right)+…+\frac{\mathrm{1}}{{n}}{ln}\left(\mathrm{cos}\:{nx}\right) \\ $$$$\frac{{dh}}{{dx}}=\frac{−\mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}−\frac{\mathrm{sin}\:\mathrm{2}{x}}{\mathrm{cos}\:\mathrm{2}{x}}−\frac{\mathrm{sin}\:\mathrm{3}{x}}{\mathrm{cos}\:\mathrm{3}{x}}−…−\frac{\mathrm{sin}\:{nx}}{\mathrm{cos}\:{nx}} \\ $$$${now}\:{we}\:{use}\:{L}'{Hopital}\:{rule} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:{x}+\mathrm{tan}\:\mathrm{2}{x}+\mathrm{tan}\:\mathrm{3}{x}+…+\mathrm{tan}\:{nx}}{\mathrm{2}{x}}= \\ $$$$\frac{\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+…+{n}}{\mathrm{2}}=\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{4}} \\ $$
Commented by jagoll last updated on 17/Jan/20
thanks sir
$${thanks}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *