Menu Close

Question-78511




Question Number 78511 by ajfour last updated on 18/Jan/20
Commented by ajfour last updated on 18/Jan/20
The cylinder has half the volume  of the cuboid. If its circular faces  touch the adjoining walls, find  coordinates of points A, B, C  in terms of a, b, c.
Thecylinderhashalfthevolumeofthecuboid.Ifitscircularfacestouchtheadjoiningwalls,findcoordinatesofpointsA,B,Cintermsofa,b,c.
Commented by ajfour last updated on 19/Jan/20
Answered by mr W last updated on 19/Jan/20
Commented by mr W last updated on 20/Jan/20
it is to find the orientation and size  of the cylinder.  P(α,0,0)  Q(0,β,0)  R(0,0,γ)  P′(a−α,0,0)  Q′(0,b−β,0)  R′(0,0,c−γ)  p=QR=(√(β^2 +γ^2 ))  q=RP=(√(γ^2 +α^2 ))  r=PQ=(√(α^2 +β^2 ))  ρ=radius of incircle=radius of cylinder  ⇒ρ=(1/2)(√(((−(√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))((√(α^2 +β^2 ))−(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))−(√(γ^2 +α^2 ))))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))))  M=center of incircle=axis of cylinder  M=(p/(p+q+r))P+(q/(p+q+r))Q+(r/(p+q+r))R  x_M =(p/(p+q+r))x_P =((α(√(β^2 +γ^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  y_M =(q/(p+q+r))y_Q =((β(√(γ^2 +α^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  z_M =(r/(p+q+r))z_R =((γ(√(α^2 +β^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  similarly  x_(M′) =(p/(p+q+r))x_(P′) =(((a−α)(√(β^2 +γ^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  y_(M′) =(q/(p+q+r))y_(Q′) =(((b−β)(√(γ^2 +α^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  z_(M′) =(r/(p+q+r))z_(R′) =(((c−γ)(√(α^2 +β^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  Δx_(M′−M) =(((a−2α)(√(β^2 +γ^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  Δy_(M′−M) =(((b−2β)(√(γ^2 +α^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  Δz_(M′−M) =(((c−2γ)(√(α^2 +β^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  MM′=L=((√((a−2α)^2 (β^2 +γ^2 )+(b−2β)^2 (γ^2 +α^2 )+(c−2γ)^2 (α^2 +β^2 )))/( (√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 ))))  L=length of cylinder  eqn. of plane PQR:  (x/α)+(y/β)+(z/γ)=1  MM′⊥plane PQR:  α(a−2α)(√(β^2 +γ^2 ))=β(b−2β)(√(γ^2 +α^2 ))=γ(c−2γ)(√(α^2 +β^2 ))  α(a−2α)(√(β^2 +γ^2 ))=γ(c−2γ)(√(α^2 +β^2 ))   ...(i)  β(b−2β)(√(γ^2 +α^2 ))=γ(c−2γ)(√(α^2 +β^2 ))   ...(ii)  volume of cylinder V=πρ^2 L=((abc)/2)  (((−(√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))((√(α^2 +β^2 ))−(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))−(√(γ^2 +α^2 )))(√((a−2α)^2 (β^2 +γ^2 )+(b−2β)^2 (γ^2 +α^2 )+(c−2γ)^2 (α^2 +β^2 ))))/(((√(α^2 +β^2 ))+(√(β^2 +γ^2 ))+(√(γ^2 +α^2 )))^2 ))=((2abc)/π)   ...(iii)  from (i) to (iii): α,β,γ
itistofindtheorientationandsizeofthecylinder.P(α,0,0)Q(0,β,0)R(0,0,γ)P(aα,0,0)Q(0,bβ,0)R(0,0,cγ)p=QR=β2+γ2q=RP=γ2+α2r=PQ=α2+β2ρ=radiusofincircle=radiusofcylinderρ=12(α2+β2+β2+γ2+γ2+α2)(α2+β2β2+γ2+γ2+α2)(α2+β2+β2+γ2γ2+α2)α2+β2+β2+γ2+γ2+α2M=centerofincircle=axisofcylinderM=pp+q+rP+qp+q+rQ+rp+q+rRxM=pp+q+rxP=αβ2+γ2α2+β2+β2+γ2+γ2+α2yM=qp+q+ryQ=βγ2+α2α2+β2+β2+γ2+γ2+α2zM=rp+q+rzR=γα2+β2α2+β2+β2+γ2+γ2+α2similarlyxM=pp+q+rxP=(aα)β2+γ2α2+β2+β2+γ2+γ2+α2yM=qp+q+ryQ=(bβ)γ2+α2α2+β2+β2+γ2+γ2+α2zM=rp+q+rzR=(cγ)α2+β2α2+β2+β2+γ2+γ2+α2ΔxMM=(a2α)β2+γ2α2+β2+β2+γ2+γ2+α2ΔyMM=(b2β)γ2+α2α2+β2+β2+γ2+γ2+α2ΔzMM=(c2γ)α2+β2α2+β2+β2+γ2+γ2+α2MM=L=(a2α)2(β2+γ2)+(b2β)2(γ2+α2)+(c2γ)2(α2+β2)α2+β2+β2+γ2+γ2+α2L=lengthofcylindereqn.ofplanePQR:xα+yβ+zγ=1MMplanePQR:α(a2α)β2+γ2=β(b2β)γ2+α2=γ(c2γ)α2+β2α(a2α)β2+γ2=γ(c2γ)α2+β2(i)β(b2β)γ2+α2=γ(c2γ)α2+β2(ii)volumeofcylinderV=πρ2L=abc2(α2+β2+β2+γ2+γ2+α2)(α2+β2β2+γ2+γ2+α2)(α2+β2+β2+γ2γ2+α2)(a2α)2(β2+γ2)+(b2β)2(γ2+α2)+(c2γ)2(α2+β2)(α2+β2+β2+γ2+γ2+α2)2=2abcπ(iii)from(i)to(iii):α,β,γ
Commented by mr W last updated on 19/Jan/20
thank you too sir!
thankyoutoosir!
Commented by ajfour last updated on 19/Jan/20
Looks fabulous Sir, i shall try  to follow....already i have  learned somethings from your  diagram post, and i am trying  to solve even. Thank you  immensely Sir.
LooksfabulousSir,ishalltrytofollow.alreadyihavelearnedsomethingsfromyourdiagrampost,andiamtryingtosolveeven.ThankyouimmenselySir.

Leave a Reply

Your email address will not be published. Required fields are marked *