Question Number 78511 by ajfour last updated on 18/Jan/20
Commented by ajfour last updated on 18/Jan/20
$${The}\:{cylinder}\:{has}\:{half}\:{the}\:{volume} \\ $$$${of}\:{the}\:{cuboid}.\:{If}\:{its}\:{circular}\:{faces} \\ $$$${touch}\:{the}\:{adjoining}\:{walls},\:{find} \\ $$$${coordinates}\:{of}\:{points}\:{A},\:{B},\:{C} \\ $$$${in}\:{terms}\:{of}\:{a},\:{b},\:{c}. \\ $$
Commented by ajfour last updated on 19/Jan/20
Answered by mr W last updated on 19/Jan/20
Commented by mr W last updated on 20/Jan/20
$${it}\:{is}\:{to}\:{find}\:{the}\:{orientation}\:{and}\:{size} \\ $$$${of}\:{the}\:{cylinder}. \\ $$$${P}\left(\alpha,\mathrm{0},\mathrm{0}\right) \\ $$$${Q}\left(\mathrm{0},\beta,\mathrm{0}\right) \\ $$$${R}\left(\mathrm{0},\mathrm{0},\gamma\right) \\ $$$${P}'\left({a}−\alpha,\mathrm{0},\mathrm{0}\right) \\ $$$${Q}'\left(\mathrm{0},{b}−\beta,\mathrm{0}\right) \\ $$$${R}'\left(\mathrm{0},\mathrm{0},{c}−\gamma\right) \\ $$$${p}={QR}=\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} } \\ $$$${q}={RP}=\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} } \\ $$$${r}={PQ}=\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} } \\ $$$$\rho={radius}\:{of}\:{incircle}={radius}\:{of}\:{cylinder} \\ $$$$\Rightarrow\rho=\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\frac{\left(−\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }\right)\left(\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }−\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }\right)\left(\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }−\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }\right)}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }}} \\ $$$${M}={center}\:{of}\:{incircle}={axis}\:{of}\:{cylinder} \\ $$$$\boldsymbol{{M}}=\frac{{p}}{{p}+{q}+{r}}\boldsymbol{{P}}+\frac{{q}}{{p}+{q}+{r}}\boldsymbol{{Q}}+\frac{{r}}{{p}+{q}+{r}}\boldsymbol{{R}} \\ $$$${x}_{{M}} =\frac{{p}}{{p}+{q}+{r}}{x}_{{P}} =\frac{\alpha\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$${y}_{{M}} =\frac{{q}}{{p}+{q}+{r}}{y}_{{Q}} =\frac{\beta\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$${z}_{{M}} =\frac{{r}}{{p}+{q}+{r}}{z}_{{R}} =\frac{\gamma\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$${similarly} \\ $$$${x}_{{M}'} =\frac{{p}}{{p}+{q}+{r}}{x}_{{P}'} =\frac{\left({a}−\alpha\right)\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$${y}_{{M}'} =\frac{{q}}{{p}+{q}+{r}}{y}_{{Q}'} =\frac{\left({b}−\beta\right)\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$${z}_{{M}'} =\frac{{r}}{{p}+{q}+{r}}{z}_{{R}'} =\frac{\left({c}−\gamma\right)\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$$\Delta{x}_{{M}'−{M}} =\frac{\left({a}−\mathrm{2}\alpha\right)\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$$\Delta{y}_{{M}'−{M}} =\frac{\left({b}−\mathrm{2}\beta\right)\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$$\Delta{z}_{{M}'−{M}} =\frac{\left({c}−\mathrm{2}\gamma\right)\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$${MM}'={L}=\frac{\sqrt{\left({a}−\mathrm{2}\alpha\right)^{\mathrm{2}} \left(\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} \right)+\left({b}−\mathrm{2}\beta\right)^{\mathrm{2}} \left(\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} \right)+\left({c}−\mathrm{2}\gamma\right)^{\mathrm{2}} \left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right)}}{\:\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }} \\ $$$${L}={length}\:{of}\:{cylinder} \\ $$$${eqn}.\:{of}\:{plane}\:{PQR}: \\ $$$$\frac{{x}}{\alpha}+\frac{{y}}{\beta}+\frac{{z}}{\gamma}=\mathrm{1} \\ $$$${MM}'\bot{plane}\:{PQR}: \\ $$$$\alpha\left({a}−\mathrm{2}\alpha\right)\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }=\beta\left({b}−\mathrm{2}\beta\right)\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }=\gamma\left({c}−\mathrm{2}\gamma\right)\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} } \\ $$$$\alpha\left({a}−\mathrm{2}\alpha\right)\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }=\gamma\left({c}−\mathrm{2}\gamma\right)\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }\:\:\:…\left({i}\right) \\ $$$$\beta\left({b}−\mathrm{2}\beta\right)\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }=\gamma\left({c}−\mathrm{2}\gamma\right)\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }\:\:\:…\left({ii}\right) \\ $$$${volume}\:{of}\:{cylinder}\:{V}=\pi\rho^{\mathrm{2}} {L}=\frac{{abc}}{\mathrm{2}} \\ $$$$\frac{\left(−\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }\right)\left(\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }−\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }\right)\left(\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }−\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }\right)\sqrt{\left({a}−\mathrm{2}\alpha\right)^{\mathrm{2}} \left(\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} \right)+\left({b}−\mathrm{2}\beta\right)^{\mathrm{2}} \left(\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} \right)+\left({c}−\mathrm{2}\gamma\right)^{\mathrm{2}} \left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} \right)}}{\left(\sqrt{\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} }+\sqrt{\beta^{\mathrm{2}} +\gamma^{\mathrm{2}} }+\sqrt{\gamma^{\mathrm{2}} +\alpha^{\mathrm{2}} }\right)^{\mathrm{2}} }=\frac{\mathrm{2}{abc}}{\pi}\:\:\:…\left({iii}\right) \\ $$$${from}\:\left({i}\right)\:{to}\:\left({iii}\right):\:\alpha,\beta,\gamma \\ $$
Commented by mr W last updated on 19/Jan/20
$${thank}\:{you}\:{too}\:{sir}! \\ $$
Commented by ajfour last updated on 19/Jan/20
$${Looks}\:{fabulous}\:{Sir},\:{i}\:{shall}\:{try} \\ $$$${to}\:{follow}….{already}\:{i}\:{have} \\ $$$${learned}\:{somethings}\:{from}\:{your} \\ $$$${diagram}\:{post},\:{and}\:{i}\:{am}\:{trying} \\ $$$${to}\:{solve}\:{even}.\:{Thank}\:{you} \\ $$$${immensely}\:{Sir}. \\ $$