Menu Close

Question-7855




Question Number 7855 by 314159 last updated on 21/Sep/16
Commented by 123456 last updated on 21/Sep/16
a_1 ,a_2 ,a_3 ⇒a_3 −a_2 =a_2 −a_1 ,a_1 ≠a_2   a_1 ,a_2 ,b_3 ,a_3 ⇒(a_3 /b_3 )=(b_3 /a_2 )=(a_2 /a_1 )  Σb=3+(√5)  (a_1 /(1−(a_2 /a_1 )))=3+(√5)         ∣(a_2 /a_1 )∣<1
$${a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{a}_{\mathrm{3}} \Rightarrow{a}_{\mathrm{3}} −{a}_{\mathrm{2}} ={a}_{\mathrm{2}} −{a}_{\mathrm{1}} ,{a}_{\mathrm{1}} \neq{a}_{\mathrm{2}} \\ $$$${a}_{\mathrm{1}} ,{a}_{\mathrm{2}} ,{b}_{\mathrm{3}} ,{a}_{\mathrm{3}} \Rightarrow\frac{{a}_{\mathrm{3}} }{{b}_{\mathrm{3}} }=\frac{{b}_{\mathrm{3}} }{{a}_{\mathrm{2}} }=\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} } \\ $$$$\Sigma{b}=\mathrm{3}+\sqrt{\mathrm{5}} \\ $$$$\frac{{a}_{\mathrm{1}} }{\mathrm{1}−\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }}=\mathrm{3}+\sqrt{\mathrm{5}}\:\:\:\:\:\:\:\:\:\mid\frac{{a}_{\mathrm{2}} }{{a}_{\mathrm{1}} }\mid<\mathrm{1} \\ $$
Commented by Rasheed Soomro last updated on 21/Sep/16
a,ar,ar^2 ,ar^3 ,...[a:first term,r:common ratio]  a,ar,ar^3    are in AP, ar is AM between a and ar^3   ∴ ar=((a+ar^3 )/2)⇒2r=1+r^3 ⇒r^3 −2r+1=0  S=(a/(1−r))=3+(√5)   [S =a+ar+ar^2 +...]..........(∗)  An attempt to factrize r^3 −2r+1  r^3 −2r+1=0  2r^3 −2r+1−r^3 =0  2r(r^2 −1)−(r^3 −1)=0  2r(r−1)(r+1)−(r−1)(r^2 +r+1)=0  (r−1)[2r(r+1)−(r^2 +r+1)]=0  r−1=0    ∣  2r^2 +2r−r^2 −r−1=0   r=1          ∣    r^2 +r−1=0  r=1 is discardable because S is infinity there.  So      r^2 +r−1=0   [r≠1]             r=((−1±(√(1+4)))/2)=((1±(√5))/2)  As r<1 So as ((1+(√5))/2)>0,  Hence r= ((1−(√5))/2) is the only value.  From   (∗)           (a/(1−r))=3+(√5)          a=(3+(√5))(1−r)          a=(3+(√5))(1−((1−(√5))/2))          a=(3+(√5))(((2−1+(√5))/2))=(3+(√5))(((1+(√5))/2))   a=(((3+(√5))(1+(√5)))/2)      a=((3+3(√5)+(√5)+5)/2)          =4+2(√5)  So the first term is  4+2(√5)
$${a},{ar},{ar}^{\mathrm{2}} ,{ar}^{\mathrm{3}} ,…\left[{a}:{first}\:{term},{r}:{common}\:{ratio}\right] \\ $$$${a},{ar},{ar}^{\mathrm{3}} \:\:\:{are}\:{in}\:{AP},\:{ar}\:{is}\:{AM}\:{between}\:{a}\:{and}\:{ar}^{\mathrm{3}} \\ $$$$\therefore\:{ar}=\frac{{a}+{ar}^{\mathrm{3}} }{\mathrm{2}}\Rightarrow\mathrm{2}{r}=\mathrm{1}+{r}^{\mathrm{3}} \Rightarrow{r}^{\mathrm{3}} −\mathrm{2}{r}+\mathrm{1}=\mathrm{0} \\ $$$${S}=\frac{{a}}{\mathrm{1}−{r}}=\mathrm{3}+\sqrt{\mathrm{5}}\:\:\:\left[{S}\:={a}+{ar}+{ar}^{\mathrm{2}} +…\right]……….\left(\ast\right) \\ $$$${An}\:{attempt}\:{to}\:{factrize}\:{r}^{\mathrm{3}} −\mathrm{2}{r}+\mathrm{1} \\ $$$${r}^{\mathrm{3}} −\mathrm{2}{r}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{2}{r}^{\mathrm{3}} −\mathrm{2}{r}+\mathrm{1}−{r}^{\mathrm{3}} =\mathrm{0} \\ $$$$\mathrm{2}{r}\left({r}^{\mathrm{2}} −\mathrm{1}\right)−\left({r}^{\mathrm{3}} −\mathrm{1}\right)=\mathrm{0} \\ $$$$\mathrm{2}{r}\left({r}−\mathrm{1}\right)\left({r}+\mathrm{1}\right)−\left({r}−\mathrm{1}\right)\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\left({r}−\mathrm{1}\right)\left[\mathrm{2}{r}\left({r}+\mathrm{1}\right)−\left({r}^{\mathrm{2}} +{r}+\mathrm{1}\right)\right]=\mathrm{0} \\ $$$${r}−\mathrm{1}=\mathrm{0}\:\:\:\:\mid\:\:\mathrm{2}{r}^{\mathrm{2}} +\mathrm{2}{r}−{r}^{\mathrm{2}} −{r}−\mathrm{1}=\mathrm{0} \\ $$$$\:{r}=\mathrm{1}\:\:\:\:\:\:\:\:\:\:\mid\:\:\:\:{r}^{\mathrm{2}} +{r}−\mathrm{1}=\mathrm{0} \\ $$$${r}=\mathrm{1}\:{is}\:{discardable}\:{because}\:{S}\:{is}\:{infinity}\:{there}. \\ $$$${So}\:\:\:\:\:\:{r}^{\mathrm{2}} +{r}−\mathrm{1}=\mathrm{0}\:\:\:\left[{r}\neq\mathrm{1}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{r}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{4}}}{\mathrm{2}}=\frac{\mathrm{1}\pm\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$${As}\:{r}<\mathrm{1}\:{So}\:{as}\:\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}>\mathrm{0},\:\:{Hence}\:{r}=\:\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\:{is}\:{the}\:{only}\:{value}. \\ $$$${From}\:\:\:\left(\ast\right) \\ $$$$\:\:\:\:\:\:\:\:\:\frac{{a}}{\mathrm{1}−{r}}=\mathrm{3}+\sqrt{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:\:{a}=\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\mathrm{1}−{r}\right) \\ $$$$\:\:\:\:\:\:\:\:{a}=\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\mathrm{1}−\frac{\mathrm{1}−\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:{a}=\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\frac{\mathrm{2}−\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)=\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right) \\ $$$$\:{a}=\frac{\left(\mathrm{3}+\sqrt{\mathrm{5}}\right)\left(\mathrm{1}+\sqrt{\mathrm{5}}\right)}{\mathrm{2}} \\ $$$$\:\:\:\:{a}=\frac{\mathrm{3}+\mathrm{3}\sqrt{\mathrm{5}}+\sqrt{\mathrm{5}}+\mathrm{5}}{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:=\mathrm{4}+\mathrm{2}\sqrt{\mathrm{5}} \\ $$$${So}\:{the}\:{first}\:{term}\:{is}\:\:\mathrm{4}+\mathrm{2}\sqrt{\mathrm{5}} \\ $$$$\:\:\:\:\:\: \\ $$
Commented by 314159 last updated on 22/Sep/16
Thank a lot!
$$\boldsymbol{\mathrm{Thank}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{lot}}! \\ $$
Commented by lepan last updated on 06/Oct/16
a=−1−(√5)
$${a}=−\mathrm{1}−\sqrt{\mathrm{5}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *