Question Number 7903 by tawakalitu last updated on 24/Sep/16
Commented by sou1618 last updated on 24/Sep/16
$${S}\:=\:\frac{\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}+\sqrt{{k}}}\:}{\:\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}−\sqrt{{k}}}\:} \\ $$$${S}\fallingdotseq{S}\:'=\frac{\:\:\int_{\mathrm{0}} ^{\mathrm{100}} \sqrt{\mathrm{10}+\sqrt{{x}}\:}\:{dx}\:}{\:\:\int_{\mathrm{0}} ^{\mathrm{100}} \sqrt{\mathrm{10}−\sqrt{{y}}\:}\:{dy}\:} \\ $$$${t}=\mathrm{10}+\sqrt{{x}} \\ $$$${x}=\left({t}−\mathrm{10}\right)^{\mathrm{2}} \\ $$$$\:\:{dx}=\mathrm{2}{t}−\mathrm{20}\:{dt} \\ $$$$\:\:{x}\left(\mathrm{0}\rightarrow\mathrm{100}\right)\Leftrightarrow{t}\left(\mathrm{10}\rightarrow\mathrm{20}\right) \\ $$$$ \\ $$$${u}=\mathrm{10}−\sqrt{{y}} \\ $$$${y}=\left(\mathrm{10}−{u}\right)^{\mathrm{2}} \\ $$$$\:\:{dy}=\mathrm{2}{t}−\mathrm{20}\:{du} \\ $$$$\:\:{y}\left(\mathrm{0}\rightarrow\mathrm{100}\right)\Leftrightarrow{u}\left(\mathrm{10}\rightarrow\mathrm{0}\right) \\ $$$$ \\ $$$${S}\:'=\frac{\int_{\mathrm{10}} ^{\mathrm{20}} \sqrt{\mathrm{10}+\sqrt{\left({t}−\mathrm{10}\right)^{\mathrm{2}} }}\:\left(\mathrm{2}{t}−\mathrm{20}\right){dt}}{\int_{\mathrm{10}} ^{\mathrm{0}} \sqrt{\mathrm{10}−\sqrt{\left(\mathrm{10}−{u}\right)^{\mathrm{2}} }}\:\left(\mathrm{2}{u}+\mathrm{20}\right){du}} \\ $$$$=\frac{\int_{\mathrm{10}} ^{\mathrm{20}} \sqrt{\mathrm{10}+\mid{t}−\mathrm{10}\mid}\:\left(\mathrm{2}{t}−\mathrm{20}\right){dt}}{\int_{\mathrm{10}} ^{\mathrm{0}} \sqrt{\mathrm{10}−\mid\mathrm{10}−{u}\mid}\:\left(\mathrm{2}{u}−\mathrm{20}\right){du}} \\ $$$$=\frac{\int_{\mathrm{10}} ^{\mathrm{20}} \mathrm{2}\sqrt{{t}}\:\left({t}−\mathrm{10}\right){dt}}{\int_{\mathrm{10}} ^{\mathrm{0}} \mathrm{2}\sqrt{{u}}\:\left({u}−\mathrm{10}\right){du}} \\ $$$$=\frac{\int_{\mathrm{10}} ^{\mathrm{20}} \sqrt{{t}^{\mathrm{3}} }−\mathrm{10}\sqrt{{t}}\:{dt}}{\int_{\mathrm{10}} ^{\mathrm{0}} \sqrt{{u}^{\mathrm{3}} }−\mathrm{10}\sqrt{{u}}\:{du}} \\ $$$$=\frac{\:\:\left[\frac{\mathrm{2}}{\mathrm{5}}\sqrt{{t}^{\mathrm{5}} }−\mathrm{10}\frac{\mathrm{2}}{\mathrm{3}}\sqrt{{t}^{\mathrm{3}} }\right]_{\mathrm{10}} ^{\mathrm{20}} \:\:}{\:\:\left[\frac{\mathrm{2}}{\mathrm{5}}\sqrt{{u}^{\mathrm{5}} }−\mathrm{10}\frac{\mathrm{2}}{\mathrm{3}}\sqrt{{u}^{\mathrm{3}} }\right]_{\mathrm{10}} ^{\mathrm{0}} \:\:} \\ $$$$=\frac{\:\:\frac{\mathrm{2}}{\mathrm{5}}\left(\sqrt{\mathrm{20}^{\mathrm{5}} }−\sqrt{\mathrm{10}^{\mathrm{5}} }\right)−\mathrm{10}\frac{\mathrm{2}}{\mathrm{3}}\left(\sqrt{\mathrm{20}^{\mathrm{3}} }−\sqrt{\mathrm{10}^{\mathrm{3}} }\right)\:\:}{\:\:\mathrm{0}−\left(\frac{\mathrm{2}}{\mathrm{5}}\sqrt{\mathrm{10}^{\mathrm{5}} }−\mathrm{10}\frac{\mathrm{2}}{\mathrm{3}}\sqrt{\mathrm{10}^{\mathrm{3}} }\right)\:\:}\:×\frac{\mathrm{3}\sqrt{\mathrm{10}}}{\mathrm{3}\sqrt{\mathrm{10}}} \\ $$$$=\frac{\frac{\mathrm{6}}{\mathrm{5}}\left(\mathrm{4000}\sqrt{\mathrm{2}}−\mathrm{1000}\right)−\mathrm{20}\left(\mathrm{200}\sqrt{\mathrm{2}}−\mathrm{100}\right)}{−\frac{\mathrm{6}}{\mathrm{5}}\left(\mathrm{1000}\right)+\mathrm{20}\left(\mathrm{100}\right)} \\ $$$$=\frac{\mathrm{4800}\sqrt{\mathrm{2}}−\mathrm{1200}−\mathrm{4000}\sqrt{\mathrm{2}}+\mathrm{2000}}{−\mathrm{1200}+\mathrm{2000}} \\ $$$$=\frac{\mathrm{800}\sqrt{\mathrm{2}}+\mathrm{800}}{\mathrm{800}} \\ $$$$=\mathrm{1}+\sqrt{\mathrm{2}} \\ $$$${so} \\ $$$${S}\fallingdotseq\mathrm{1}+\sqrt{\mathrm{2}} \\ $$
Commented by tawakalitu last updated on 24/Sep/16
$${Wow}\:{thanks}\:{so}\:{much}.\:{i}\:{really}\:{appreciate}. \\ $$
Commented by Yozzia last updated on 24/Sep/16
$${How}\:{come}\:{S}\:\fallingdotseq\:{S}\:'\:? \\ $$
Commented by sou1618 last updated on 24/Sep/16
$$\sqrt{\mathrm{10}\pm\sqrt{{k}}}\fallingdotseq\int_{{k}−\mathrm{1}} ^{{k}} \sqrt{\mathrm{10}\pm\sqrt{{x}}}\:{dx} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\sqrt{\mathrm{10}\pm\sqrt{{k}}}\fallingdotseq\underset{{k}=\mathrm{1}} {\overset{\mathrm{100}} {\sum}}\int_{{k}−\mathrm{1}} ^{\:{k}} \sqrt{\mathrm{10}\pm\sqrt{{x}}}\:{dx} \\ $$$$\left(\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}\pm\sqrt{{k}}}\right)+\sqrt{\mathrm{10}\pm\mathrm{10}}\fallingdotseq\int_{\mathrm{0}} ^{\mathrm{100}} \sqrt{\mathrm{10}\pm\sqrt{{x}}}\:{dx} \\ $$$${now} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}\pm\sqrt{{k}}}>>\sqrt{\mathrm{10}\pm\mathrm{10}} \\ $$$${I}\:{think}\:\sqrt{\mathrm{10}+\mathrm{10}}\:{is}\:{less}\:{than}\:\sqrt{\mathrm{2}}\%\:{of}\:\:\Sigma \\ $$$$\:{because}…\:{when}\:\mathrm{0}<{k}<\mathrm{100} \\ $$$$\:\:\:\sqrt{\mathrm{2}}\sqrt{\mathrm{10}+\sqrt{{k}}}>\sqrt{\mathrm{10}+\mathrm{10}} \\ $$$$ \\ $$$$ \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{99}} {\sum}}\sqrt{\mathrm{10}\pm\sqrt{{k}}}\fallingdotseq\int_{\mathrm{0}} ^{\mathrm{100}} \sqrt{\mathrm{10}\pm\sqrt{{x}}}\:{dx} \\ $$$${so} \\ $$$${S}\fallingdotseq{S}\:' \\ $$
Answered by prakash jain last updated on 02/Oct/16
$$\mathrm{answer}\:\mathrm{n}\:\mathrm{comments} \\ $$