Menu Close

Question-8073




Question Number 8073 by 314159 last updated on 29/Sep/16
Commented by 123456 last updated on 30/Sep/16
cosh(x)=((e^x +e^(−x) )/2)  x^4 +x^(−4) =47  x=e^t   e^(4t) +e^(−4t) =47  2∙((e^(4t) +e^(−4t) )/2)=47  2cosh(4t)=47  t=((argcosh(((47)/2)))/4)  x^3 +x^(−3) =2∙((e^(3t) +e^(−3t) )/2)=2cosh(3t)  =2cosh(((3argcosh(((47)/2)))/4))
cosh(x)=ex+ex2x4+x4=47x=ete4t+e4t=472e4t+e4t2=472cosh(4t)=47t=argcosh(472)4x3+x3=2e3t+e3t2=2cosh(3t)=2cosh(3argcosh(472)4)
Commented by Rasheed Soomro last updated on 30/Sep/16
Appreciations for this novel approach!  Can we obtain the answer in more simplified form?
Appreciationsforthisnovelapproach!Canweobtaintheanswerinmoresimplifiedform?
Commented by prakash jain last updated on 30/Sep/16
This gives only one solution.  x^4 +(1/x^4 ) gives 8 solutions which are be  α,β,γ,θ,(1/α),(1/β),(1/γ),(1/θ)  effectively we get 4 solutions for x^3 +(1/x^3 )  as given in Rasheed′s Answer? How do  we get same 4 answer using above approach?  Actual calculation of the value gives 18.
Thisgivesonlyonesolution.x4+1x4gives8solutionswhicharebeα,β,γ,θ,1α,1β,1γ,1θeffectivelyweget4solutionsforx3+1x3asgiveninRasheedsAnswer?Howdowegetsame4answerusingaboveapproach?Actualcalculationofthevaluegives18.
Commented by 123456 last updated on 30/Sep/16
y=cosh(t)=((e^t +e^(−t) )/2)  x=e^t   2y=x+(1/x)  2xy=x^2 +1  x^2 −2xy+1=0  Δ=4y^2 −4=4(y^2 −1)  x=y±(√(y^2 −1))    (x≥0)  e^t =y+(√(y^2 −1))  t=ln(y+(√(y^2 −1)))  argcosh(t)=ln(t+(√(t^2 −1)))
y=cosh(t)=et+et2x=et2y=x+1x2xy=x2+1x22xy+1=0Δ=4y24=4(y21)x=y±y21(x0)et=y+y21t=ln(y+y21)argcosh(t)=ln(t+t21)
Commented by 123456 last updated on 30/Sep/16
we lost some roots  y=x^2 ⇒x=±(√y)  also  cos(x+2πk)=cos(x)  cosh(xi)=cos(x)  so cosh are periodic too, but the period  is 2πi
welostsomerootsy=x2x=±yalsocos(x+2πk)=cos(x)cosh(xi)=cos(x)socoshareperiodictoo,buttheperiodis2πi
Commented by prakash jain last updated on 30/Sep/16
Thanks. I understand now.  2cosh(4t)=47  Will give 4t=2inπ±cosh^(−1) (47/2)  So we get 8 solution for t for n=0,1,2,3
Thanks.Iunderstandnow.2cosh(4t)=47Willgive4t=2inπ±cosh1(47/2)Soweget8solutionfortforn=0,1,2,3
Answered by Rasheed Soomro last updated on 29/Sep/16
x^4 +(1/x^4 )=47 , x^3 +(1/x^3 )=?  x^4 +(1/x^4 )=47  x^4 +2+(1/x^4 )=47+2  (x^2 )^2 +2(x^2 )((1/x^2 ))+((1/x^2 ))=49  (x^2 +(1/x^2 ))^2 =(±7)^2   x^2 +(1/x^2 )=7 ∣ x^2 +(1/x^2 )=−7  x^2 +2+(1/x^2 )=7+2 ∣ x^2 +2+(1/x^2 )=−7+2  (x)^2 +2(x)((1/x))+((1/x))^2 =9 ∣ (x)^2 +2(x)((1/x))+((1/x))^2 =−5  (x+(1/x))^2 =(±3)^2  ∣  (x+(1/x))^2 =(±(√5) i)^2    x+(1/x)= ±3  ∣  x+(1/x)= ±(√5) i     (x+(1/x))^3 = (±3)^3   ∣  (x+(1/x))^3 = (±(√5) i)^3   x^3 +(1/x^3 )+3(x+(1/x))=(±3)^2 (±3) ∣ x^3 +(1/x^3 )+3(x+(1/x))=(±(√5) i)^2 (±(√5) i)  x^3 +(1/x^3 )+3(±3)=(9)(±3) ∣ x^3 +(1/x^3 )+3(±(√5) i)=(−5)(±(√5) i)  x^3 +(1/x^3 )=(9)(±3)−3(±3) ∣ x^3 +(1/x^3 )=(−5)(±(√5) i)−3(±(√5) i)  x^3 +(1/x^3 )=(9−3)(±3) ∣ x^3 +(1/x^3 )=(−5−3)(±(√5) i)  x^3 +(1/x^3 )=6(±3) ∣ x^3 +(1/x^3 )=−8(±(√5) i)  x^3 +(1/x^3 )=±18 ∣ x^3 +(1/x^3 )=∓8(√5) i  x^3 +(1/x^3 )=18 , −18 , −8(√5) i , 8(√5) i
x4+1x4=47,x3+1x3=?x4+1x4=47x4+2+1x4=47+2(x2)2+2(x2)(1x2)+(1x2)=49(x2+1x2)2=(±7)2x2+1x2=7x2+1x2=7x2+2+1x2=7+2x2+2+1x2=7+2(x)2+2(x)(1x)+(1x)2=9(x)2+2(x)(1x)+(1x)2=5(x+1x)2=(±3)2(x+1x)2=(±5i)2x+1x=±3x+1x=±5i(x+1x)3=(±3)3(x+1x)3=(±5i)3x3+1x3+3(x+1x)=(±3)2(±3)x3+1x3+3(x+1x)=(±5i)2(±5i)x3+1x3+3(±3)=(9)(±3)x3+1x3+3(±5i)=(5)(±5i)x3+1x3=(9)(±3)3(±3)x3+1x3=(5)(±5i)3(±5i)x3+1x3=(93)(±3)x3+1x3=(53)(±5i)x3+1x3=6(±3)x3+1x3=8(±5i)x3+1x3=±18x3+1x3=85ix3+1x3=18,18,85i,85i
Answered by prof.kerdus last updated on 29/Sep/16
its 18  •⌣•
its18
Answered by Rasheed Soomro last updated on 30/Sep/16
Another approach_(−)   x^4 +(1/x^4 )=47 , x^3 +(1/x^3 )=?  (x^4 +(1/x^4 ))^3 =(47)^3   (a+(1/a))^3 =a^3 +(1/a^3 )+3(a+(1/a))  (x^4 )^3 +((1/x^4 ))^3 +3(x^4 +(1/x^4 ))=103823  x^(12) +(1/x^(12) )+3(47)=103823  x^(12) +(1/x^(12) )=103823−141=103682    (x^6 )^2 +((1/x^6 ))^2 =103682  (x^6 )^2 +2+((1/x^6 ))^2 =103682+2  (x^6 )^2 +2(x^6 )((1/x^6 ))+((1/x^6 ))^2 =103684  (x^6 +(1/x^6 ))^2 =(±322)^2   x^6 +(1/x^6 )=±322  x^6 +2+(1/x^6 )=±322+2   (x^3 )^2 +2(x^3 )((1/x^3 ))+((1/x^3 ))^2 =324 , −320  (x^3 +(1/x^3 ))^2 =(±18)^(2  ) ∣  (x^3 +(1/x^3 ))^2 =(±8(√5) i)^2   x^3 +(1/x^3 )=±18  ∣  x^3 +(1/x^3 )=±8(√5) i  x^3 +(1/x^3 )=18, −18, 8(√5) i, −8(√5) i
Anotherapproachx4+1x4=47,x3+1x3=?(x4+1x4)3=(47)3(a+1a)3=a3+1a3+3(a+1a)(x4)3+(1x4)3+3(x4+1x4)=103823x12+1x12+3(47)=103823x12+1x12=103823141=103682(x6)2+(1x6)2=103682(x6)2+2+(1x6)2=103682+2(x6)2+2(x6)(1x6)+(1x6)2=103684(x6+1x6)2=(±322)2x6+1x6=±322x6+2+1x6=±322+2(x3)2+2(x3)(1x3)+(1x3)2=324,320(x3+1x3)2=(±18)2(x3+1x3)2=(±85i)2x3+1x3=±18x3+1x3=±85ix3+1x3=18,18,85i,85i
Answered by Rasheed Soomro last updated on 30/Sep/16
Slightly   defferent version  of my answer  dated 29/9/16  x^4 +(1/x^4 )=47, x^3 +(1/x^3 )=?  Let  x+(1/x)=y            ( x+(1/x))^2 =y^2              x^2 +(1/x^2 )=y^2 −2             (x^2 +(1/x^2 ))^2 =(y^2 −2)^2            x^4 +(1/x^4 )=(y^2 −2)^2 −2=47          (y^2 −2)^2 =47+2=49          (y^2 −2)^2 =(±7)^2             y^2 −2=±7           y^2 =±7+2           y^2 =7+2 , −7+2          y^2 =(±3)^2    ∣    y^2 =(±(√(−5)) )^2         y=3,−3         ∣    y=(√5) i ,−(√5) i  x+(1/x)=3 , −3 , (√5) i , −(√5) i  For remaining process see my answer dated 29/09/16
Slightlydefferentversionofmyanswerdated29/9/16x4+1x4=47,x3+1x3=?Letx+1x=y(x+1x)2=y2x2+1x2=y22(x2+1x2)2=(y22)2x4+1x4=(y22)22=47(y22)2=47+2=49(y22)2=(±7)2y22=±7y2=±7+2y2=7+2,7+2y2=(±3)2y2=(±5)2y=3,3y=5i,5ix+1x=3,3,5i,5iForremainingprocessseemyanswerdated29/09/16

Leave a Reply

Your email address will not be published. Required fields are marked *