Menu Close

Question-8387




Question Number 8387 by arinto27 last updated on 09/Oct/16
Answered by ridwan balatif last updated on 10/Oct/16
1.f(x)=5x+1        y   =5x+1        x   =((y−1)/5)  f^(−1) (x)=((x−1)/5)⇔f^(−1) (a)=((a−1)/5)⇔15=a−1⇔a=16  2.f(x)=x+3 dan g(x)=x^2 −2x−1  (fog)(x)=f(g(x))                     =f(x^2 −2x−1)                     =(x^2 −2x−1)+3                     =x^2 −2x+2  3.f(x)=ax+3       f^(−1) (x)=((x−3)/a)  f^(−1) (f^(−1) (x))=ax+3  f^(−1) (f^(−1) (9))=a.9+3  3=9a+3  a=0  a^2 +a+1=0+0+1=1
1.f(x)=5x+1y=5x+1x=y15f1(x)=x15f1(a)=a1515=a1a=162.f(x)=x+3dang(x)=x22x1(fog)(x)=f(g(x))=f(x22x1)=(x22x1)+3=x22x+23.f(x)=ax+3f1(x)=x3af1(f1(x))=ax+3f1(f1(9))=a.9+33=9a+3a=0a2+a+1=0+0+1=1
Commented by 123456 last updated on 10/Oct/16
1:f(x)=5x+1,f^(−1) (a)=3  f^(−1) (a)=3  f(f^(−1) (a))=f(3)=3×5+1=16  a=16
1:f(x)=5x+1,f1(a)=3f1(a)=3f(f1(a))=f(3)=3×5+1=16a=16
Commented by 123456 last updated on 10/Oct/16
3:f(x)=ax+3,f^(−1) (f^(−1) (9))=3  f^(−1) (f^(−1) (9))=3  f(f^(−1) (f^(−1) (9)))=f(3)=3a+3=3(a+1)  f^(−1) (9)=3(a+1)  f(f^(−1) (9))=f(3(a+1))=3(a+1)a+3  9=3((a+1)a+1)=3(a^2 +a+1)  a^2 +a+1=3
3:f(x)=ax+3,f1(f1(9))=3f1(f1(9))=3f(f1(f1(9)))=f(3)=3a+3=3(a+1)f1(9)=3(a+1)f(f1(9))=f(3(a+1))=3(a+1)a+39=3((a+1)a+1)=3(a2+a+1)a2+a+1=3
Commented by sandy_suhendra last updated on 10/Oct/16
3) f^(−1) [f^(−1) (x)] = ((((x−3)/a) − 3)/a) =((x−3−3a)/a^2 )       f^(−1) [f^(−1) (9)]=((9−3−3a)/a^2 ) = 3         3a^2 =6−3a         3a^2 +3a=6           a^2 +a=2           a^2 +a+1=2+1=3
3)f1[f1(x)]=x3a3a=x33aa2f1[f1(9)]=933aa2=33a2=63a3a2+3a=6a2+a=2a2+a+1=2+1=3

Leave a Reply

Your email address will not be published. Required fields are marked *