Question Number 9048 by tawakalitu last updated on 16/Nov/16
Answered by Rasheed Soomro last updated on 16/Nov/16
$$\left.\mathrm{a}\right)\:\:\mathrm{Straight}\:\mathrm{line}:\:\mathrm{y}=\mathrm{mx}+\mathrm{c} \\ $$$$\:\:\:\:\:\:\:\mathrm{Circle}:\:\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{2gx}+\mathrm{2fy}+\mathrm{C}_{\mathrm{1}} =\mathrm{0} \\ $$$$\mathrm{For}\:\mathrm{intersection}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{above} \\ $$$$\mathrm{equations}\:\mathrm{simultaneously}. \\ $$$$\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} +\left(\mathrm{mx}+\mathrm{c}\right)^{\mathrm{2}} +\mathrm{2gx}+\mathrm{2f}\left(\mathrm{mx}+\mathrm{c}\right)+\mathrm{C}_{\mathrm{1}} =\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\mathrm{x}^{\mathrm{2}} +\mathrm{m}^{\mathrm{2}} \mathrm{x}^{\mathrm{2}} +\mathrm{2mcx}+\mathrm{c}^{\mathrm{2}} +\mathrm{2gx}+\mathrm{2fmx}+\mathrm{2fc}+\mathrm{C}_{\mathrm{1}} =\mathrm{0} \\ $$$$\left(\mathrm{1}+\mathrm{m}^{\mathrm{2}} \right)\mathrm{x}^{\mathrm{2}} +\mathrm{2}\left(\mathrm{mc}+\mathrm{g}+\mathrm{mf}\right)\mathrm{x}+\mathrm{c}^{\mathrm{2}} +\mathrm{2fc}+\mathrm{C}_{\mathrm{1}} =\mathrm{0} \\ $$$$\mathrm{x}=\frac{−\mathrm{2}\left(\mathrm{mc}+\mathrm{g}+\mathrm{mf}\right)\pm\sqrt{\left\{\mathrm{2}\left(\mathrm{mc}+\mathrm{g}+\mathrm{mf}\right)\right\}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}+\mathrm{m}^{\mathrm{2}} \right)\left(\mathrm{c}^{\mathrm{2}} +\mathrm{2fc}+\mathrm{C}_{\mathrm{1}} \right)}}{\mathrm{2}\left(\mathrm{1}+\mathrm{m}^{\mathrm{2}} \right)} \\ $$$$\mathrm{y}=\mathrm{mx}+\mathrm{c} \\ $$$$\:=\mathrm{m}\left(\frac{−\mathrm{2}\left(\mathrm{mc}+\mathrm{g}+\mathrm{mf}\right)\pm\sqrt{\left\{\mathrm{2}\left(\mathrm{mc}+\mathrm{g}+\mathrm{mf}\right)\right\}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}+\mathrm{m}^{\mathrm{2}} \right)\left(\mathrm{c}^{\mathrm{2}} +\mathrm{2fc}+\mathrm{C}_{\mathrm{1}} \right)}}{\mathrm{2}\left(\mathrm{1}+\mathrm{m}^{\mathrm{2}} \right)}\right)+\mathrm{c} \\ $$$$\mathrm{Continue} \\ $$
Commented by tawakalitu last updated on 16/Nov/16
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{will}\:\mathrm{be}\:\mathrm{expecting}\:\mathrm{sir}. \\ $$