Question Number 9648 by Chantria last updated on 22/Dec/16
Answered by sandy_suhendra last updated on 23/Dec/16
$$\mathrm{x}^{\mathrm{4}} +\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{2}+\frac{\mathrm{3}}{\mathrm{x}^{\mathrm{2}} }\:>\:\mathrm{0} \\ $$$$\frac{\mathrm{x}^{\mathrm{6}} +\mathrm{x}^{\mathrm{4}} −\mathrm{2x}^{\mathrm{3}} +\mathrm{2x}^{\mathrm{2}} +\mathrm{3}}{\mathrm{x}^{\mathrm{2}} }\:>\:\mathrm{0} \\ $$$$\frac{\left(\mathrm{x}^{\mathrm{6}} −\mathrm{2x}^{\mathrm{3}} +\mathrm{1}\right)+\left(\mathrm{x}^{\mathrm{4}} +\mathrm{2x}^{\mathrm{2}} +\mathrm{1}\right)+\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:>\:\mathrm{0} \\ $$$$\frac{\left(\mathrm{x}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{2}} +\left(\mathrm{x}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} +\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\:>\:\mathrm{0} \\ $$$$\mathrm{the}\:\mathrm{numerator}\:\mathrm{is}\:\mathrm{always}\:\mathrm{positive}\:\mathrm{for}\:\mathrm{the}\:\mathrm{real}\:\mathrm{number}\:\mathrm{x} \\ $$$$\mathrm{but}\:\mathrm{x}^{\mathrm{2}} \neq\:\mathrm{0}\:\mathrm{or}\:\mathrm{x}\neq\mathrm{0} \\ $$