Question Number 9686 by tawakalitu last updated on 24/Dec/16
Answered by mrW last updated on 24/Dec/16
$$\mathrm{u}=\mathrm{log}\:\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right) \\ $$$$\frac{\mathrm{du}}{\mathrm{dy}}=\frac{\mathrm{2y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} }×\mathrm{log}\:\mathrm{e} \\ $$$$\frac{\mathrm{d}^{\mathrm{2}} \mathrm{u}}{\mathrm{dydz}}=−\frac{\mathrm{2y}×\mathrm{2z}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right)^{\mathrm{2}} }×\mathrm{log}\:\mathrm{e} \\ $$$$\mathrm{x}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{u}}{\mathrm{dydz}}=−\frac{\mathrm{4xyz}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right)^{\mathrm{2}} }×\mathrm{log}\:\mathrm{e} \\ $$$$\mathrm{similarly}: \\ $$$$\mathrm{y}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{u}}{\mathrm{dxdz}}=−\frac{\mathrm{4xyz}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right)^{\mathrm{2}} }×\mathrm{log}\:\mathrm{e} \\ $$$$\mathrm{z}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{u}}{\mathrm{dxdy}}=−\frac{\mathrm{4xyz}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} +\mathrm{z}^{\mathrm{2}} \right)^{\mathrm{2}} }×\mathrm{log}\:\mathrm{e} \\ $$$$\:\mathrm{hence}: \\ $$$$\mathrm{x}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{u}}{\mathrm{dydz}}=\mathrm{y}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{u}}{\mathrm{dxdz}}=\mathrm{z}\frac{\mathrm{d}^{\mathrm{2}} \mathrm{u}}{\mathrm{dxdy}} \\ $$
Commented by tawakalitu last updated on 24/Dec/16
$$\mathrm{Thanks}\:\mathrm{sir}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}. \\ $$