Menu Close

Question-9912




Question Number 9912 by ridwan balatif last updated on 15/Jan/17
Answered by mrW1 last updated on 15/Jan/17
lim_(x→π)  ((1+cos x)/((x−π)^2 ))  t=x−π  x=t+π  1+cos x=1+cos (t+π)=1−cos t  =1−(1−2sin^2  (t/2))=2sin^2 ((t/2))   lim_(x→π)  ((1+cos x)/((x−π)^2 ))=lim_(t→0)  ((2sin^2 ((t/2)) )/t^2 )=(1/2)×lim_(t→0)  [((sin ((t/2)) )/(((t/2))))]^2 =(1/2)×1^2 =(1/2)  ⇒ Answer (E)
limxπ1+cosx(xπ)2t=xπx=t+π1+cosx=1+cos(t+π)=1cost=1(12sin2t2)=2sin2(t2)limxπ1+cosx(xπ)2=limt02sin2(t2)t2=12×limt0[sin(t2)(t2)]2=12×12=12Answer(E)

Leave a Reply

Your email address will not be published. Required fields are marked *