Menu Close

Question-9977




Question Number 9977 by konen last updated on 20/Jan/17
Answered by sandy_suhendra last updated on 20/Jan/17
log_3^2   (x−6)^2  = log_9  (x−8)  (x−6)^2 =x−8  x^2 −12x+36=x−8  x^2 −13x+44=0  x_(1,2)  = ((13±(√(169−176)))/2) ⇒ x=imaginary
$$\mathrm{log}_{\mathrm{3}^{\mathrm{2}} } \:\left(\mathrm{x}−\mathrm{6}\right)^{\mathrm{2}} \:=\:\mathrm{log}_{\mathrm{9}} \:\left(\mathrm{x}−\mathrm{8}\right) \\ $$$$\left(\mathrm{x}−\mathrm{6}\right)^{\mathrm{2}} =\mathrm{x}−\mathrm{8} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{12x}+\mathrm{36}=\mathrm{x}−\mathrm{8} \\ $$$$\mathrm{x}^{\mathrm{2}} −\mathrm{13x}+\mathrm{44}=\mathrm{0} \\ $$$$\mathrm{x}_{\mathrm{1},\mathrm{2}} \:=\:\frac{\mathrm{13}\pm\sqrt{\mathrm{169}−\mathrm{176}}}{\mathrm{2}}\:\Rightarrow\:\mathrm{x}=\mathrm{imaginary} \\ $$
Commented by prakash jain last updated on 20/Jan/17
If the question was  log _9 (x−6)=log_3 (x−8)  (x−6)=(x−8)^2   x−6=x^2 −16x+64  x^2 −17x+70=0  (x−7)(x−10)=0  x=10 [x=7 does not satisfy]
$$\mathrm{If}\:\mathrm{the}\:\mathrm{question}\:\mathrm{was} \\ $$$$\mathrm{log}\:_{\mathrm{9}} \left({x}−\mathrm{6}\right)=\mathrm{log}_{\mathrm{3}} \left({x}−\mathrm{8}\right) \\ $$$$\left({x}−\mathrm{6}\right)=\left({x}−\mathrm{8}\right)^{\mathrm{2}} \\ $$$${x}−\mathrm{6}={x}^{\mathrm{2}} −\mathrm{16}{x}+\mathrm{64} \\ $$$${x}^{\mathrm{2}} −\mathrm{17}{x}+\mathrm{70}=\mathrm{0} \\ $$$$\left({x}−\mathrm{7}\right)\left({x}−\mathrm{10}\right)=\mathrm{0} \\ $$$${x}=\mathrm{10}\:\left[{x}=\mathrm{7}\:\mathrm{does}\:\mathrm{not}\:\mathrm{satisfy}\right] \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *