Menu Close

r-1-n-1-r2-r-




Question Number 3682 by Yozzii last updated on 19/Dec/15
Σ_(r=1) ^n (1/(r2^r ))=?
nr=11r2r=?
Commented by RasheedSindhi last updated on 19/Dec/15
Σ_(r=1) ^n (1/(r2^r ))=?  (1/(1.2^1 ))+(1/(2.2^2 ))+(1/(3.2^3 ))+(1/(4.2^4 ))+...+(1/(n2^n ))  (A/r)+(B/2^r )=(1/(r2^r ))  A(2^r )+B(r)=1  Let r=0  A(1)=1⇒A=1  B(r)=1−2^r   B=((1−2^r )/r)  (1/(r2^r ))=(1/r)+(((1−2^r )/r)/2^r )  Σ_(r=1) ^n (1/(r2^r ))=Σ_(r=1) ^n (1/r)+Σ_(r=1) ^n (((1−2^r )/r)/2^r )
nr=11r2r=?11.21+12.22+13.23+14.24++1n2nAr+B2r=1r2rA(2r)+B(r)=1Letr=0A(1)=1A=1B(r)=12rB=12rr1r2r=1r+12rr2rnr=11r2r=nr=11r+nr=112rr2r
Commented by Yozzii last updated on 19/Dec/15
y=q^(−r−1) ⇒∫_1 ^2 q^(−r−1) dq=(1/(−rq^r ))∣_1 ^2   ⇒Σ_(r=1) ^n {∫_1 ^2 (q^(−1) )^(r+1) dq}=−Σ_(r=1) ^n ((1/(r2^r ))−(1/r))  Σ_(r=1) ^n (1/(rq^r ))=Σ_(r=1) ^n (1/r)+∫_1 ^2 (q^(−1) )^2 Σ_(r=1) ^n (q^(−1) )^(r−1) dq^   Σ_(r=1) ^n (1/(rq^r ))=Σ_(r=1) ^n (1/r)+∫^2 _1 (q^(−1) )^2 (((q^(−n) −1))/(q^(−1) −1))dq  S(n)=H(n)+∫_1 ^2 (q^(−1) )^2 ((1−q^n )/(q^n (1−q)/q))dq  S(n)−H(n)=∫_1 ^2 ((1−q^n )/(q^(n+1) (1−q)))dq
y=qr112qr1dq=1rqr12nr=1{12(q1)r+1dq}=nr=1(1r2r1r)nr=11rqr=nr=11r+12(q1)2nr=1(q1)r1dqnr=11rqr=nr=11r+12(q1)2(qn1)q11dqS(n)=H(n)+12(q1)21qnqn(1q)/qdqS(n)H(n)=121qnqn+1(1q)dq
Commented by Rasheed Soomro last updated on 19/Dec/15
(1/(r2^r ))=(A/r)+(B_1 /2)+(B_2 /2^2 )+(B_3 /2^3 )+...+(B_r /2^r )  A(2^r )+B_1 (r2^(r−1) )+B_2 (r2^(r−2) )+B_3 (r2^(r−3) )+...+B_r (r)=1  A can be determined by r=0  B_1 ,B_2 ,...B_r =???  How can we determine partial fractions of  (1/(r2^r )) ?
1r2r=Ar+B12+B222+B323++Br2rA(2r)+B1(r2r1)+B2(r2r2)+B3(r2r3)++Br(r)=1Acanbedeterminedbyr=0B1,B2,Br=???Howcanwedeterminepartialfractionsof1r2r?
Commented by 123456 last updated on 19/Dec/15
i think it cant be made  or the coeficients A,B...  doenst be constant
ithinkitcantbemadeorthecoeficientsA,Bdoenstbeconstant
Commented by prakash jain last updated on 19/Dec/15
S(n)=H(n)+.. has may have mistake somewhere  lim_(n→∞)  S(n)=Σ_(r=1) ^∞  (1/(r∙2^r ))=ln (2)
S(n)=H(n)+..hasmayhavemistakesomewherelimnS(n)=r=11r2r=ln(2)
Commented by prakash jain last updated on 19/Dec/15
Σ_(i=2) ^∞ (1/x^i )=((1/x^2 )/(1−1/x)),         ∣x∣>1  integrate  −Σ_(i=2) ^∞ (1/((i−1)x^(i−1) ))=∫(1/(x(x−1)))=ln (x−1)−ln x  Σ_(i=1) ^∞ (1/((i)x^i ))=∫(1/(x(x−1)))=−ln (x−1)+ln x  x=2  Σ_(i=1) ^∞   (1/(i2^i ))=ln 2
i=21xi=1/x211/x,x∣>1integratei=21(i1)xi1=1x(x1)=ln(x1)lnxi=11(i)xi=1x(x1)=ln(x1)+lnxx=2i=11i2i=ln2

Leave a Reply

Your email address will not be published. Required fields are marked *