R-e-its-s-3-ds- Tinku Tara June 3, 2023 Integration 0 Comments FacebookTweetPin Question Number 143190 by Ar Brandon last updated on 11/Jun/21 ∫Reitss+3ds Commented by mohammad17 last updated on 11/Jun/21 w=1s+3⇒s=1w−3⇒ds=−1w2dw∫weit(1w−3)(−1w2)dw=1e3it∫we(itw)(−1w2)dwbybart::u=w→du=dw,dv=e(itw)(−1w2)→v=1ite(itw)=1ite3itwe(itw)−1ite3it∫e(itw)dw=1ite3itwe(itw)−1ite3itwe(itw)+1e3itEi(itw)+C∫Reitss+3ds=1e3itEi(it(s+3))+C⟨mohammadaldolaimy⟩ Commented by Ar Brandon last updated on 11/Jun/21 ThanksSir.Canyouinsertthelimitsandevaluate? Answered by mathmax by abdo last updated on 11/Jun/21 Φ=∫−∞+∞eitxx+3dx=∫−∞0eitxx+3dx+∫0∞eitxx+3dxbut∫−∞0eitxx+3dx=x=−u∫0∞e−itu3−udu=∫0∞e−itx3−xdx⇒Φ=∫0∞eitxx+3dx+∫0∞e−itx3−xdx[wehave∫0∞eitxx+3dx=∫0∞(∫0∞e−(x+3)zdz)eitxdx=∫0∞(∫0∞e(−z+it)xdx)e−3zdz=∫0∞([1−z+ite(−z+it)x]0∞)e−3zdz=∫0∞(1−z+it)e−3zdz=−∫0∞(1z−it)e−3zdz=−∫0∞(z+it)e−3zz2+t2dz∫0∞e−itx3−xdx=∫0∞(∫0∞e−(3−x)zdz)e−itxdx=∫0∞(∫0∞e(z−it)xdx)e−3zdz=∫0∞([1z−ite(z−it)x]0∞)e−3zdz=∫0∞(−1z−it)e−3zdz=−∫0∞(z+it)e−3zz2+t2dz⇒Φ=−∫0∞(z+it)e−3zz2+t2dz−∫0∞(z+it)e−3zz2+t2dz=−2∫0∞(z+it)e−3zz2+t2dz….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 10-25-28-125-82-625-Next Next post: Find-the-remainder-when-x-x-25-x-49-x-81-is-divided-by-x-3-1- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.