Menu Close

R-e-its-s-3-ds-




Question Number 143190 by Ar Brandon last updated on 11/Jun/21
∫_R (e^(its) /(s+3))ds
Reitss+3ds
Commented by mohammad17 last updated on 11/Jun/21
w=(1/(s+3))⇒s=(1/w)−3⇒ds=−(1/w^2 )dw    ∫we^(it((1/w)−3))   (−(1/w^2 ))dw=(1/e^(3it) ) ∫ we^((((it)/w))) (−(1/w^2 ))dw    by bart::u=w→du=dw  ,  dv=e^((((it)/w))) (−(1/w^2 ))→v=(1/(it))e^((((it)/w)))     =(1/(ite^(3it) ))we^((((it)/w))) −(1/(ite^(3it) ))∫ e^((((it)/w))) dw    =(1/(ite^(3it) ))we^((((it)/w))) −(1/(ite^(3it) ))we^((((it)/w))) +(1/e^(3it) )Ei(((it)/w))+C    ∫_R (e^(its) /(s+3))ds=(1/e^(3it) )Ei(it(s+3))+C    ⟨mohammad aldolaimy⟩
w=1s+3s=1w3ds=1w2dwweit(1w3)(1w2)dw=1e3itwe(itw)(1w2)dwbybart::u=wdu=dw,dv=e(itw)(1w2)v=1ite(itw)=1ite3itwe(itw)1ite3ite(itw)dw=1ite3itwe(itw)1ite3itwe(itw)+1e3itEi(itw)+CReitss+3ds=1e3itEi(it(s+3))+Cmohammadaldolaimy
Commented by Ar Brandon last updated on 11/Jun/21
Thanks Sir. Can you insert   the limits and evaluate ?
ThanksSir.Canyouinsertthelimitsandevaluate?
Answered by mathmax by abdo last updated on 11/Jun/21
Φ=∫_(−∞) ^(+∞)  (e^(itx) /(x+3))dx =∫_(−∞) ^0  (e^(itx) /(x+3))dx +∫_0 ^∞  (e^(itx) /(x+3))dx  but  ∫_(−∞) ^0    (e^(itx) /(x+3))dx =_(x=−u)   ∫_0 ^∞   (e^(−itu) /(3−u))du  =∫_0 ^∞  (e^(−itx) /(3−x))dx ⇒  Φ=∫_0 ^∞  (e^(itx) /(x+3))dx +∫_0 ^∞  (e^(−itx) /(3−x))dx [we have  ∫_0 ^∞  (e^(itx) /(x+3))dx =∫_0 ^∞ (∫_0 ^∞  e^(−(x+3)z) dz)e^(itx) dx  =∫_0 ^∞ (∫_0 ^∞ e^((−z+it)x) dx)e^(−3z) dz  =∫_0 ^∞ ([(1/(−z+it))e^((−z+it)x) ]_0 ^∞ )e^(−3z) dz =∫_0 ^∞ ((1/(−z+it)))e^(−3z) dz  =−∫_0 ^∞ ((1/(z−it)))e^(−3z) dz =−∫_0 ^∞  (((z+it)e^(−3z) )/(z^2  +t^2 ))dz  ∫_0 ^∞  (e^(−itx) /(3−x))dx =∫_0 ^∞ (∫_0 ^∞  e^(−(3−x)z) dz)e^(−itx) dx  =∫_0 ^∞ (∫_0 ^∞  e^((z−it)x) dx)e^(−3z) dz  =∫_0 ^∞ ([(1/(z−it))e^((z−it)x) ]_0 ^∞ )e^(−3z) dz  =∫_0 ^∞ (−(1/(z−it)))e^(−3z) dz =−∫_0 ^∞ (((z+it)e^(−3z) )/(z^2  +t^2 ))dz ⇒  Φ=−∫_0 ^∞ (((z+it)e^(−3z) )/(z^2  +t^2 ))dz−∫_0 ^∞  (((z+it)e^(−3z) )/(z^2  +t^2 ))dz  =−2∫_0 ^∞  (((z+it)e^(−3z) )/(z^2  +t^2 ))dz ....be continued....
Φ=+eitxx+3dx=0eitxx+3dx+0eitxx+3dxbut0eitxx+3dx=x=u0eitu3udu=0eitx3xdxΦ=0eitxx+3dx+0eitx3xdx[wehave0eitxx+3dx=0(0e(x+3)zdz)eitxdx=0(0e(z+it)xdx)e3zdz=0([1z+ite(z+it)x]0)e3zdz=0(1z+it)e3zdz=0(1zit)e3zdz=0(z+it)e3zz2+t2dz0eitx3xdx=0(0e(3x)zdz)eitxdx=0(0e(zit)xdx)e3zdz=0([1zite(zit)x]0)e3zdz=0(1zit)e3zdz=0(z+it)e3zz2+t2dzΦ=0(z+it)e3zz2+t2dz0(z+it)e3zz2+t2dz=20(z+it)e3zz2+t2dz.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *