Menu Close

R-gt-0-0-lt-lt-f-m-sin-t-dt-f-r-sin-2-t-dt-f-m-pi-6-5pi-6-f-m-pi-6-pi-2-f-r-pi-6-5pi-6-f-r-pi-6-pi-




Question Number 1673 by 123456 last updated on 31/Aug/15
ω∈R,ω>0  0<α<β  f_m (α,β)=(ω/(β−α))∫_(α/ω) ^(β/ω) sin (ωt)dt  f_r (α,β)=(√((ω/(β−α))∫_(α/ω) ^(β/ω) sin^2 (ωt)dt))  f_m ((π/6),((5π)/6))=^? f_m ((π/6),(π/2))  f_r ((π/6),((5π)/6))=^? f_r ((π/6),(π/2))
ωR,ω>00<α<βfm(α,β)=ωβαβ/ωα/ωsin(ωt)dtfr(α,β)=ωβαβ/ωα/ωsin2(ωt)dtfm(π6,5π6)=?fm(π6,π2)fr(π6,5π6)=?fr(π6,π2)
Answered by Yozzian last updated on 31/Aug/15
Under the integral within the given  expressions of f_m (α,β) and f_r (α,β)  ω is constant. So we can integrate  as usual with ω>0.  ∫_(α/ω) ^(β/ω) sinωt dt=−(1/ω)cos(ωt)∣_(α/ω) ^(β/ω)   rhs=((−1)/ω)(cosβ−cosα)  ∴ f_m (α,β)=((cosα−cosβ)/(β−α))  When α=π/6 and β=5π/6  f_m ((π/6),((5π)/6))=((cos((π/6))−cos(((5π)/6)))/(π((5/6)−(1/6))))                      =((((√3)/2)−(−((√3)/2)))/((2π)/3))  f_m ((π/6),((5π)/6))=((3(√3))/(2π)).................. (1)  When α=(π/6) and β=(π/2) we obtain  f_m ((π/6),(π/2))=((cos((π/6))−cos((π/2)))/(π((1/2)−(1/6))))                       =(((√3)/2−0)/(π/3))  f_m ((π/6),(π/2))=((3(√3))/(2π))  ....................(2)  Upon comparison of results (1)   and (2), we see that they are equal  in value.   Hence,f_m ((π/6),((5π)/6))=f_m ((π/6),(π/2)) .    The next integral also has ω   constant with respect to the   variable under integration t.  ∴∫_(α/ω) ^(β/ω) sin^2 ωt dt=(1/2)∫_(α/w) ^(β/ω) (1−cos(2ωt))dt  rhs=(1/2)(t−(1/(2ω))sin(2ωt))∣_(α/ω) ^(β/ω)   rhs=(1/2)(((β−α)/ω)+(1/(2ω))(sin(2α)−sin(2β)))  rhs=((2(β−α)+sin2α−sin2β)/(4ω))  ∴f_r (α,β)=(√((2(β−α)+sin2α−sin2β)/(4(β−α))))  When α=(π/6) and β=((5π)/6) we get  f_r ((π/6),((5π)/6))=(√((1/2)+((sin(π/3)−sin((5π)/3))/((2π)/3))))              =(√((1/2)+((((√3)/2)−(−((√3)/2)))/(2π/3))))              =(√((1/2)+((3(√3))/(2π))))  f_r ((π/6),((5π)/6))=(√((π+3(√3))/(2π))). .......(3)  When α=(π/6) and β=(π/2) we have  f_r ((π/6),(π/2))=(√((1/2)+((sin(π/3)−sinπ)/(π/3))))                     =(√((π+3(√3))/(2π))).  ........(4)  On comparing the results (3) and  (4) we see that they are equal in  value. Hence,            f_r ((π/6),((5π)/6))=f_r ((π/6),(π/2)) .
Undertheintegralwithinthegivenexpressionsoffm(α,β)andfr(α,β)ωisconstant.Sowecanintegrateasusualwithω>0.α/ωβ/ωsinωtdt=1ωcos(ωt)α/ωβ/ωrhs=1ω(cosβcosα)fm(α,β)=cosαcosββαWhenα=π/6andβ=5π/6fm(π6,5π6)=cos(π6)cos(5π6)π(5616)=32(32)2π3fm(π6,5π6)=332π(1)Whenα=π6andβ=π2weobtainfm(π6,π2)=cos(π6)cos(π2)π(1216)=3/20π/3fm(π6,π2)=332π..(2)Uponcomparisonofresults(1)and(2),weseethattheyareequalinvalue.Hence,fm(π6,5π6)=fm(π6,π2).Thenextintegralalsohasωconstantwithrespecttothevariableunderintegrationt.α/ωβ/ωsin2ωtdt=12α/wβ/ω(1cos(2ωt))dtrhs=12(t12ωsin(2ωt))α/ωβ/ωrhs=12(βαω+12ω(sin(2α)sin(2β)))rhs=2(βα)+sin2αsin2β4ωfr(α,β)=2(βα)+sin2αsin2β4(βα)Whenα=π6andβ=5π6wegetfr(π6,5π6)=12+sinπ3sin5π32π3=12+32(32)2π/3=12+332πfr(π6,5π6)=π+332π..(3)Whenα=π6andβ=π2wehavefr(π6,π2)=12+sinπ3sinππ/3=π+332π...(4)Oncomparingtheresults(3)and(4)weseethattheyareequalinvalue.Hence,fr(π6,5π6)=fr(π6,π2).

Leave a Reply

Your email address will not be published. Required fields are marked *