Menu Close

resolve-logx-y-logy-x-x-y-y-x-




Question Number 78314 by mfwajoel1 last updated on 15/Jan/20
resolve  {_(logx_y =logy_x ) ^(x^y =y^x )
resolve{logxy=logyxxy=yx
Commented by john santu last updated on 16/Jan/20
what the meaning logy_x  ?
whatthemeaninglogyx?
Answered by MJS last updated on 16/Jan/20
if you mean log_y  x =log_x  y    (1) ⇒ yln x =xln y  (2) ⇒ ((ln x)/(ln y))=((ln y)/(ln x)) ⇒ ln y =±ln x ⇒ y=x∨y=(1/x)       [(a/b)=(b/a) ⇒ a^2 =b^2  ⇒ b=±a]  case 1 y=x  ⇒ (1) x^x =x^x  true for x∈C\{0}  case 2 y=(1/x)  ⇒ (1) ((ln x)/x)=xln (1/x)               ((ln x)/x)=−xln x              (1/x)=−x ⇒ x=±i ⇒ y=∓i
ifyoumeanlogyx=logxy(1)ylnx=xlny(2)lnxlny=lnylnxlny=±lnxy=xy=1x[ab=baa2=b2b=±a]case1y=x(1)xx=xxtrueforxC{0}case2y=1x(1)lnxx=xln1xlnxx=xlnx1x=xx=±iy=i

Leave a Reply

Your email address will not be published. Required fields are marked *