Menu Close

S-1-x-y-R-2-x-2-y-2-1-0-4pi-E-1-1-E-1-1-R-2-t-1-cos-t-sin-t-cos-t-sin-t-S-1-E-1-1-1-is-injective-into-E-1-1-2-can-1-E-1-1-0-4pi-be-continuous-




Question Number 1456 by 123456 last updated on 06/Aug/15
 S^1 ={(x,y)∈R^2 :x^2 +y^2 =1}  ϕ:[0,4π)→E^(1,1) ,E^(1,1) ⊂R^2   ϕ(t)=(1+cos t sin t)(cos t,sin t)  S^1 ∩E^(1,1) ≠∅  1.is ϕ injective into E^(1,1)   2.can ϕ^(−1) :E^(1,1) →[0,4π) be continuous?
$$ \mathrm{S}^{\mathrm{1}} =\left\{\left({x},{y}\right)\in\mathbb{R}^{\mathrm{2}} :{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1}\right\} \\ $$$$\varphi:\left[\mathrm{0},\mathrm{4}\pi\right)\rightarrow\mathrm{E}^{\mathrm{1},\mathrm{1}} ,\mathrm{E}^{\mathrm{1},\mathrm{1}} \subset\mathbb{R}^{\mathrm{2}} \\ $$$$\varphi\left({t}\right)=\left(\mathrm{1}+\mathrm{cos}\:{t}\:\mathrm{sin}\:{t}\right)\left(\mathrm{cos}\:{t},\mathrm{sin}\:{t}\right) \\ $$$$\mathrm{S}^{\mathrm{1}} \cap\mathrm{E}^{\mathrm{1},\mathrm{1}} \neq\emptyset \\ $$$$\mathrm{1}.\mathrm{is}\:\varphi\:\mathrm{injective}\:\mathrm{into}\:\mathrm{E}^{\mathrm{1},\mathrm{1}} \\ $$$$\mathrm{2}.\mathrm{can}\:\varphi^{−\mathrm{1}} :\mathrm{E}^{\mathrm{1},\mathrm{1}} \rightarrow\left[\mathrm{0},\mathrm{4}\pi\right)\:\mathrm{be}\:\mathrm{continuous}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *