Menu Close

s-dx-dy-dx-dz-dy-dz-x-2-y-2-z-2-where-s-is-the-surface-x-2-y-2-z-2-1-




Question Number 596 by 123456 last updated on 08/Feb/15
∫∫_s ((dx∧dy+dx∧dz−dy∧dz)/(x^2 +y^2 +z^2 ))  where s is the surface x^2 +y^2 +z^2 =1
$$\int\underset{{s}} {\int}\frac{{dx}\wedge{dy}+{dx}\wedge{dz}−{dy}\wedge{dz}}{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} } \\ $$$${where}\:{s}\:{is}\:{the}\:{surface}\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} =\mathrm{1}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *