Question Number 136408 by nimnim last updated on 21/Mar/21
$$\:\:\:\:\:\:{S}=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{3}{k}^{\mathrm{2}} }{\mathrm{2}{k}^{\mathrm{3}} +\mathrm{2}}\:\:=? \\ $$$$\:\:\:\:\:\:\:\:\:=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{3}{k}^{\mathrm{2}} }{{k}^{\mathrm{3}} +\mathrm{1}}\right)=\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\mathrm{1}}{{k}+\mathrm{1}}+\frac{\mathrm{2}{k}−\mathrm{1}}{{k}^{\mathrm{2}} −{k}+\mathrm{1}}\right] \\ $$$$\:\:\:\:\:\:\:\:\:{I}\:{dont}\:{know}\:{how}\:{to}\:{continue}…{Please}\:{Help}. \\ $$$$ \\ $$
Answered by Dwaipayan Shikari last updated on 21/Mar/21
$$\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}+\mathrm{1}}\rightarrow{Diverges}\:\:\left({Whole}\:{series}\:{diverges}\right) \\ $$
Commented by nimnim last updated on 21/Mar/21
$${Thank}\:{you}\:{sir}.. \\ $$
Answered by mathmax by abdo last updated on 21/Mar/21
$$\mathrm{without}\:\mathrm{calculus}\:\mathrm{the}\:\mathrm{serie}\:\mathrm{is}\:\mathrm{divergent}\:…! \\ $$