Menu Close

S-log-a-i-i-2-1-a-R-Solve-S-extra-what-if-a-C-




Question Number 4582 by FilupSmith last updated on 08/Feb/16
S=log_a i  i^2 =−1  a∈R  Solve S    extra:  what if  a∈C?
S=logaii2=1aRSolveSextra:whatifaC?
Answered by Yozzii last updated on 09/Feb/16
By change of base,   S=log_a i=((lni)/(lna)).  Now, i=0+i×1=cosα+isinα  ∴ sinα=1⇒α=nπ+(−1)^n (π/2)  (n∈Z)  cosα=cos(nπ+(−1)^n 0.5π)=(−1)^n ×0+0×1=0  ∴ i=e^(i(nπ+(−1)^n (π/2)))   ⇒S=((lnexp(i{nπ+(((−1)^n π)/2)}))/(lna))  S=(i/(lna))(nπ+((π(−1)^n )/2))  (1)If a>0, then lna∈R and indeed S=(i/(lna))(nπ+((π(−1)^n )/2))  (n∈Z).  So, S can take infinitely many values  for any given a>0 since ∣Z∣=ℵ_0 .    (2)If a=0, S is undefined since the   graph of y=lnx is discontinuous at   x=0. However, lim_(x→0^+ ) lnx=−∞  ⇒ lim_(a→0^+ ) S=lim_(a→0^+ ) (i/(lna))(nπ+0.5π(−1)^n )=(i/(−∞))(nπ+0.5(−1)^n π)=0×i=0.    (3)If  a<0⇒lna=ln(−r)=ln(re^((2w+1)πi) )  lna=lnr+(2w+1)πi where r>0 and w∈Z.  ∴S=((i(nπ+0.5π(−1)^n ))/((lnr+(2w+1)πi)))=((i(nπ+0.5π(−1)^n ))/((ln(−a)+(2w+1)πi)))   S=((i(ln(−a)−(2w+1)πi)(nπ+0.5π(−1)^n ))/(({ln(−a)}^2 +(2w+1)^2 π^2 )))  S=((((2w+1)π+iln(−a))(nπ+0.5π(−1)^n ))/(2(ln^2 (−a)+(2w+1)^2 π^2 )))   (n,w∈Z)  In this case, S is not unique for a given a<0,  similar to when a>0.  For a given a<0, S takes infinitely   many values determined by the integer  pairs (n,w) where n=w or n≠w.    (4)For a∈C⇒let a=ce^(iθ)  where c>0  and θ=arg(a)=argument of a.  ∴ lna=lnce^(iθ) =lnc+iθ  ∴ S=((i(nπ+0.5(−1)^n π))/(lnc+iθ))   S=((πi(lnc−iθ)(n+0.5(−1)^n ))/({lnc}^2 +θ^2 ))    S=((π(n+0.5(−1)^n )(θ+ilnc))/({lnc}^2 +θ^2 ))  (n∈Z)
Bychangeofbase,S=logai=lnilna.Now,i=0+i×1=cosα+isinαsinα=1α=nπ+(1)nπ2(nZ)cosα=cos(nπ+(1)n0.5π)=(1)n×0+0×1=0i=ei(nπ+(1)nπ2)S=lnexp(i{nπ+(1)nπ2})lnaS=ilna(nπ+π(1)n2)(1)Ifa>0,thenlnaRandindeedS=ilna(nπ+π(1)n2)(nZ).So,Scantakeinfinitelymanyvaluesforanygivena>0sinceZ∣=0.(2)Ifa=0,Sisundefinedsincethegraphofy=lnxisdiscontinuousatx=0.However,limx0+lnx=lima0+S=lima0+ilna(nπ+0.5π(1)n)=i(nπ+0.5(1)nπ)=0×i=0.(3)Ifa<0lna=ln(r)=ln(re(2w+1)πi)lna=lnr+(2w+1)πiwherer>0andwZ.S=i(nπ+0.5π(1)n)(lnr+(2w+1)πi)=i(nπ+0.5π(1)n)(ln(a)+(2w+1)πi)S=i(ln(a)(2w+1)πi)(nπ+0.5π(1)n)({ln(a)}2+(2w+1)2π2)S=((2w+1)π+iln(a))(nπ+0.5π(1)n)2(ln2(a)+(2w+1)2π2)(n,wZ)Inthiscase,Sisnotuniqueforagivena<0,similartowhena>0.Foragivena<0,Stakesinfinitelymanyvaluesdeterminedbytheintegerpairs(n,w)wheren=wornw.(4)ForaCleta=ceiθwherec>0andθ=arg(a)=argumentofa.lna=lnceiθ=lnc+iθS=i(nπ+0.5(1)nπ)lnc+iθS=πi(lnciθ)(n+0.5(1)n){lnc}2+θ2S=π(n+0.5(1)n)(θ+ilnc){lnc}2+θ2(nZ)

Leave a Reply

Your email address will not be published. Required fields are marked *