S-log-a-i-i-2-1-a-R-Solve-S-extra-what-if-a-C- Tinku Tara June 3, 2023 Algebra 0 Comments FacebookTweetPin Question Number 4582 by FilupSmith last updated on 08/Feb/16 S=logaii2=−1a∈RSolveSextra:whatifa∈C? Answered by Yozzii last updated on 09/Feb/16 Bychangeofbase,S=logai=lnilna.Now,i=0+i×1=cosα+isinα∴sinα=1⇒α=nπ+(−1)nπ2(n∈Z)cosα=cos(nπ+(−1)n0.5π)=(−1)n×0+0×1=0∴i=ei(nπ+(−1)nπ2)⇒S=lnexp(i{nπ+(−1)nπ2})lnaS=ilna(nπ+π(−1)n2)(1)Ifa>0,thenlna∈RandindeedS=ilna(nπ+π(−1)n2)(n∈Z).So,Scantakeinfinitelymanyvaluesforanygivena>0since∣Z∣=ℵ0.(2)Ifa=0,Sisundefinedsincethegraphofy=lnxisdiscontinuousatx=0.However,limx→0+lnx=−∞⇒lima→0+S=lima→0+ilna(nπ+0.5π(−1)n)=i−∞(nπ+0.5(−1)nπ)=0×i=0.(3)Ifa<0⇒lna=ln(−r)=ln(re(2w+1)πi)lna=lnr+(2w+1)πiwherer>0andw∈Z.∴S=i(nπ+0.5π(−1)n)(lnr+(2w+1)πi)=i(nπ+0.5π(−1)n)(ln(−a)+(2w+1)πi)S=i(ln(−a)−(2w+1)πi)(nπ+0.5π(−1)n)({ln(−a)}2+(2w+1)2π2)S=((2w+1)π+iln(−a))(nπ+0.5π(−1)n)2(ln2(−a)+(2w+1)2π2)(n,w∈Z)Inthiscase,Sisnotuniqueforagivena<0,similartowhena>0.Foragivena<0,Stakesinfinitelymanyvaluesdeterminedbytheintegerpairs(n,w)wheren=worn≠w.(4)Fora∈C⇒leta=ceiθwherec>0andθ=arg(a)=argumentofa.∴lna=lnceiθ=lnc+iθ∴S=i(nπ+0.5(−1)nπ)lnc+iθS=πi(lnc−iθ)(n+0.5(−1)n){lnc}2+θ2S=π(n+0.5(−1)n)(θ+ilnc){lnc}2+θ2(n∈Z) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: In-a-right-triangle-the-mid-point-of-the-hypotenuse-is-equidistant-from-all-the-three-vertices-of-the-triangle-Next Next post: Question-70121 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.