Question Number 7590 by FilupSmith last updated on 05/Sep/16
$${S}\:=\:\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\:\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}\left({n}−\mathrm{1}\right)} \\ $$$${S}=? \\ $$
Commented by Yozzia last updated on 05/Sep/16
$$\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}\left({n}−\mathrm{1}\right)}\equiv\frac{{a}}{{n}}+\frac{{b}}{{n}−\mathrm{1}} \\ $$$$\Rightarrow\mathrm{2}\left({n}+\mathrm{1}\right)={a}\left({n}−\mathrm{1}\right)+{bn} \\ $$$${n}=\mathrm{0}\Rightarrow\mathrm{2}=−{a}\Rightarrow{a}=−\mathrm{2} \\ $$$${n}=\mathrm{1}\Rightarrow{b}=\mathrm{4} \\ $$$$\therefore\:\frac{\mathrm{4}}{{n}−\mathrm{1}}−\frac{\mathrm{2}}{{n}}=\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}\left({n}−\mathrm{1}\right)} \\ $$$${S}=\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\frac{\mathrm{2}\left({n}+\mathrm{1}\right)}{{n}\left({n}−\mathrm{1}\right)}=\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\left\{\frac{\mathrm{4}}{{n}−\mathrm{1}}−\frac{\mathrm{2}}{{n}}\right\} \\ $$$${S}=\mathrm{2}\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\frac{\mathrm{1}}{{n}−\mathrm{1}}+\mathrm{2}\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\left\{\frac{\mathrm{1}}{{n}−\mathrm{1}}−\frac{\mathrm{1}}{{n}}\right\} \\ $$$${S}=\mathrm{2}\left\{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{k}−\mathrm{2}}\right\}+\mathrm{2}\left\{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{3}}−\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{5}}+…+\frac{\mathrm{1}}{{k}−\mathrm{3}}−\frac{\mathrm{1}}{{k}−\mathrm{2}}+\frac{\mathrm{1}}{{k}−\mathrm{2}}−\frac{\mathrm{1}}{{k}−\mathrm{1}}+\frac{\mathrm{1}}{{k}−\mathrm{1}}−\frac{\mathrm{1}}{{k}}\right\} \\ $$$${S}=\mathrm{2}{H}_{{k}−\mathrm{2}} +\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{{k}}\right) \\ $$
Commented by FilupSmith last updated on 05/Sep/16
$$\mathrm{According}\:\mathrm{to}\:\mathrm{wolframAlpha}: \\ $$$${S}=\mathrm{2}\left(−\frac{\mathrm{1}}{{k}}+\psi^{\left(\mathrm{0}\right)} \left({k}\right)+\gamma+\mathrm{1}\right) \\ $$$$\mathrm{why}??? \\ $$
Commented by FilupSmith last updated on 05/Sep/16
$${S}=\mathrm{2}{H}_{{k}−\mathrm{2}} +\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{{k}}\right) \\ $$$${S}=\mathrm{2}\left({H}_{{k}−\mathrm{2}} +\mathrm{1}−\frac{\mathrm{1}}{{k}}\right) \\ $$$${S}=\mathrm{2}\left(−\frac{\mathrm{1}}{{k}}+{H}_{{k}−\mathrm{2}} +\mathrm{1}\right)=\mathrm{2}\left(−\frac{\mathrm{1}}{{k}}+\psi^{\left(\mathrm{0}\right)} \left({k}\right)+\gamma+\mathrm{1}\right) \\ $$$$\therefore{H}_{{k}−\mathrm{2}} =\psi^{\left(\mathrm{0}\right)} \left({k}\right)+\gamma\:\:\:\:\:\:????? \\ $$
Commented by 123456 last updated on 05/Sep/16
$$\mathrm{yes},\:{also} \\ $$$${H}_{{k}−\mathrm{1}} =\psi^{\left(\mathrm{0}\right)} \left({k}\right)\:\:\:\:–{digamma}\:{function} \\ $$$$\underset{{n}=\mathrm{2}} {\overset{{k}} {\sum}}\frac{\mathrm{1}}{{n}−\mathrm{1}}=\underset{{m}=\mathrm{1}} {\overset{{k}−\mathrm{1}} {\sum}}\frac{\mathrm{1}}{{m}}={H}_{{k}−\mathrm{1}} \\ $$$${m}={n}−\mathrm{1}\Rightarrow\begin{cases}{{n}=\mathrm{2}\Rightarrow{m}=\mathrm{2}−\mathrm{1}=\mathrm{1}}\\{{n}={k}\Rightarrow{m}={k}−\mathrm{1}}\end{cases} \\ $$