Question Number 142023 by SOMEDAVONG last updated on 25/May/21
$$\mathrm{S}_{\mathrm{n}} =\underset{\mathrm{k}=\mathrm{0}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{n}−\mathrm{k}\right)!\left(\mathrm{n}+\mathrm{k}\right)!}\:=?? \\ $$
Answered by aleks041103 last updated on 25/May/21
$$\frac{\mathrm{1}}{\left({n}−{k}\right)!\left({n}+{k}\right)!}= \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)!}\:\frac{\left(\mathrm{2}{n}\right)!}{\left({n}−{k}\right)!\left(\left(\mathrm{2}{n}\right)−\left({n}−{k}\right)\right)!}= \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)!}\begin{pmatrix}{\:\:\:\mathrm{2}{n}}\\{{n}−{k}}\end{pmatrix} \\ $$$${S}_{{n}} =\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)!}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\:\:\mathrm{2}{n}}\\{{n}−{k}}\end{pmatrix}\:=\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}\right)!}\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix} \\ $$$$\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\begin{pmatrix}{\:\:\:\:\mathrm{2}{n}}\\{\mathrm{2}{n}−{k}}\end{pmatrix} \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\:\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\:\:\:\:\:\mathrm{2}{n}}\\{\:\mathrm{2}{n}−{k}}\end{pmatrix}\:=\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:={s} \\ $$$$\mathrm{2}{s}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:+\underset{{k}={n}} {\overset{\mathrm{2}{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\:\underset{{k}=\mathrm{0}} {\overset{\mathrm{2}{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\mathrm{2}^{\mathrm{2}{n}} \\ $$$$\Rightarrow\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{k}}\end{pmatrix}\:=\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \\ $$$$\Rightarrow{S}_{{n}} =\frac{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} }{\left(\mathrm{2}{n}\right)!} \\ $$